656 lines
20 KiB
HLSL
656 lines
20 KiB
HLSL
#ifndef UNITY_PACKING_INCLUDED
|
|
#define UNITY_PACKING_INCLUDED
|
|
|
|
#if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3
|
|
#pragma warning (disable : 3205) // conversion of larger type to smaller
|
|
#endif
|
|
|
|
//Attempting to normalize a half vector doesn't quite work, is sometimes off significantly. Problem seems to be in the reciprocal square root
|
|
// function. Solution: cast the dot product to a float before taking the rsqrt so we get a more accurate result.
|
|
real3 AccurateNormalize(real3 x)
|
|
{
|
|
float fdot = dot(x,x);
|
|
return x * (real)rsqrt(dot(x,x));
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Normal packing
|
|
//-----------------------------------------------------------------------------
|
|
|
|
real3 PackNormalMaxComponent(real3 n)
|
|
{
|
|
return (n / Max3(abs(n.x), abs(n.y), abs(n.z))) * 0.5 + 0.5;
|
|
}
|
|
|
|
real3 UnpackNormalMaxComponent(real3 n)
|
|
{
|
|
return normalize(n * 2.0 - 1.0);
|
|
}
|
|
|
|
// Ref: http://www.vis.uni-stuttgart.de/~engelhts/paper/vmvOctaMaps.pdf "Octahedron Environment Maps"
|
|
// Encode with Oct, this function work with any size of output
|
|
// return real between [-1, 1]
|
|
real2 PackNormalOctRectEncode(real3 n)
|
|
{
|
|
// Perform planar projection.
|
|
real3 p = n * rcp(dot(abs(n), 1.0));
|
|
real x = p.x, y = p.y, z = p.z;
|
|
|
|
// Unfold the octahedron.
|
|
// Also correct the aspect ratio from 2:1 to 1:1.
|
|
real r = saturate(0.5 - 0.5 * x + 0.5 * y);
|
|
real g = x + y;
|
|
|
|
// Negative hemisphere on the left, positive on the right.
|
|
return real2(CopySign(r, z), g);
|
|
}
|
|
|
|
real3 UnpackNormalOctRectEncode(real2 f)
|
|
{
|
|
real r = f.r, g = f.g;
|
|
|
|
// Solve for {x, y, z} given {r, g}.
|
|
real x = 0.5 + 0.5 * g - abs(r);
|
|
real y = g - x;
|
|
real z = max(1.0 - abs(x) - abs(y), REAL_EPS); // EPS is absolutely crucial for anisotropy
|
|
|
|
real3 p = real3(x, y, CopySign(z, r));
|
|
|
|
return normalize(p);
|
|
}
|
|
|
|
// Ref: http://jcgt.org/published/0003/02/01/paper.pdf "A Survey of Efficient Representations for Independent Unit Vectors"
|
|
// Encode with Oct, this function work with any size of output
|
|
// return real between [-1, 1]
|
|
float2 PackNormalOctQuadEncode(float3 n)
|
|
{
|
|
//float l1norm = dot(abs(n), 1.0);
|
|
//float2 res0 = n.xy * (1.0 / l1norm);
|
|
|
|
//float2 val = 1.0 - abs(res0.yx);
|
|
//return (n.zz < float2(0.0, 0.0) ? (res0 >= 0.0 ? val : -val) : res0);
|
|
|
|
// Optimized version of above code:
|
|
n *= rcp(max(dot(abs(n), 1.0), 1e-6));
|
|
float t = saturate(-n.z);
|
|
return n.xy + (n.xy >= 0.0 ? t : -t);
|
|
}
|
|
|
|
float3 UnpackNormalOctQuadEncode(float2 f)
|
|
{
|
|
float3 n = float3(f.x, f.y, 1.0 - abs(f.x) - abs(f.y));
|
|
|
|
//float2 val = 1.0 - abs(n.yx);
|
|
//n.xy = (n.zz < float2(0.0, 0.0) ? (n.xy >= 0.0 ? val : -val) : n.xy);
|
|
|
|
// Optimized version of above code:
|
|
float t = max(-n.z, 0.0);
|
|
n.xy += n.xy >= 0.0 ? -t.xx : t.xx;
|
|
|
|
return normalize(n);
|
|
}
|
|
|
|
real2 PackNormalHemiOctEncode(real3 n)
|
|
{
|
|
real l1norm = dot(abs(n), 1.0);
|
|
real2 res = n.xy * (1.0 / l1norm);
|
|
|
|
return real2(res.x + res.y, res.x - res.y);
|
|
}
|
|
|
|
real3 UnpackNormalHemiOctEncode(real2 f)
|
|
{
|
|
real2 val = real2(f.x + f.y, f.x - f.y) * 0.5;
|
|
real3 n = real3(val, 1.0 - dot(abs(val), 1.0));
|
|
|
|
return normalize(n);
|
|
}
|
|
|
|
// Tetrahedral encoding - Looks like Tetra encoding 10:10 + 2 is similar to oct 11:11, as oct is cheaper prefer it
|
|
// To generate the basisNormal below we use these 4 vertex of a regular tetrahedron
|
|
// v0 = float3(1.0, 0.0, -1.0 / sqrt(2.0));
|
|
// v1 = float3(-1.0, 0.0, -1.0 / sqrt(2.0));
|
|
// v2 = float3(0.0, 1.0, 1.0 / sqrt(2.0));
|
|
// v3 = float3(0.0, -1.0, 1.0 / sqrt(2.0));
|
|
// Then we normalize the average of each face's vertices
|
|
// normalize(v0 + v1 + v2), etc...
|
|
static const real3 tetraBasisNormal[4] =
|
|
{
|
|
real3(0., 0.816497, -0.57735),
|
|
real3(-0.816497, 0., 0.57735),
|
|
real3(0.816497, 0., 0.57735),
|
|
real3(0., -0.816497, -0.57735)
|
|
};
|
|
|
|
// Then to get the local matrix (with z axis rotate to basisNormal) use GetLocalFrame(basisNormal[xxx])
|
|
static const real3x3 tetraBasisArray[4] =
|
|
{
|
|
real3x3(-1., 0., 0.,0., 0.57735, 0.816497,0., 0.816497, -0.57735),
|
|
real3x3(0., -1., 0.,0.57735, 0., 0.816497,-0.816497, 0., 0.57735),
|
|
real3x3(0., 1., 0.,-0.57735, 0., 0.816497,0.816497, 0., 0.57735),
|
|
real3x3(1., 0., 0.,0., -0.57735, 0.816497,0., -0.816497, -0.57735)
|
|
};
|
|
|
|
// Return [-1..1] vector2 oriented in plane of the faceIndex of a regular tetrahedron
|
|
real2 PackNormalTetraEncode(float3 n, out uint faceIndex)
|
|
{
|
|
// Retrieve the tetrahedra's face for the normal direction
|
|
// It is the one with the greatest dot value with face normal
|
|
real dot0 = dot(n, tetraBasisNormal[0]);
|
|
real dot1 = dot(n, tetraBasisNormal[1]);
|
|
real dot2 = dot(n, tetraBasisNormal[2]);
|
|
real dot3 = dot(n, tetraBasisNormal[3]);
|
|
|
|
real maxi0 = max(dot0, dot1);
|
|
real maxi1 = max(dot2, dot3);
|
|
real maxi = max(maxi0, maxi1);
|
|
|
|
// Get the index from the greatest dot
|
|
if (maxi == dot0)
|
|
faceIndex = 0;
|
|
else if (maxi == dot1)
|
|
faceIndex = 1;
|
|
else if (maxi == dot2)
|
|
faceIndex = 2;
|
|
else //(maxi == dot3)
|
|
faceIndex = 3;
|
|
|
|
// Rotate n into this local basis
|
|
n = mul(tetraBasisArray[faceIndex], n);
|
|
|
|
// Project n onto the local plane
|
|
return n.xy;
|
|
}
|
|
|
|
// Assume f [-1..1]
|
|
real3 UnpackNormalTetraEncode(real2 f, uint faceIndex)
|
|
{
|
|
// Recover n from local plane
|
|
real3 n = real3(f.xy, sqrt(1.0 - dot(f.xy, f.xy)));
|
|
// Inverse of transform PackNormalTetraEncode (just swap order in mul as we have a rotation)
|
|
return mul(n, tetraBasisArray[faceIndex]);
|
|
}
|
|
|
|
// Unpack from normal map
|
|
real3 UnpackNormalRGB(real4 packedNormal, real scale = 1.0)
|
|
{
|
|
real3 normal;
|
|
normal.xyz = real3(packedNormal.rg * 2.0 - 1.0, packedNormal.b);
|
|
normal.xy *= scale;
|
|
return normal;
|
|
}
|
|
|
|
real3 UnpackNormalRGBNoScale(real4 packedNormal)
|
|
{
|
|
return real3(packedNormal.rg * 2.0 - 1.0, packedNormal.b);
|
|
}
|
|
|
|
real3 UnpackNormalAG(real4 packedNormal, real scale = 1.0)
|
|
{
|
|
real3 normal;
|
|
normal.xy = packedNormal.ag * 2.0 - 1.0;
|
|
normal.z = max(1.0e-16, sqrt(1.0 - saturate(dot(normal.xy, normal.xy))));
|
|
|
|
// must scale after reconstruction of normal.z which also
|
|
// mirrors UnpackNormalRGB(). This does imply normal is not returned
|
|
// as a unit length vector but doesn't need it since it will get normalized after TBN transformation.
|
|
// If we ever need to blend contributions with built-in shaders for URP
|
|
// then we should consider using UnpackDerivativeNormalAG() instead like
|
|
// HDRP does since derivatives do not use renormalization and unlike tangent space
|
|
// normals allow you to blend, accumulate and scale contributions correctly.
|
|
normal.xy *= scale;
|
|
return normal;
|
|
}
|
|
|
|
// Unpack normal as DXT5nm (1, y, 0, x) or BC5 (x, y, 0, 1)
|
|
real3 UnpackNormalmapRGorAG(real4 packedNormal, real scale = 1.0)
|
|
{
|
|
// Convert to (?, y, 0, x)
|
|
packedNormal.a *= packedNormal.r;
|
|
return UnpackNormalAG(packedNormal, scale);
|
|
}
|
|
|
|
//New - Decode hemi octahedral coordinates to normal vector, without normalization
|
|
real3 UnpackNormalHemiOctEncodeNoNormalize(real2 f)
|
|
{
|
|
real2 val = real2(f.x + f.y, f.x - f.y);
|
|
//real2 safeVal;// = abs(val);
|
|
//safeVal.x = val.x < -1.0E9 ? -val.x : val.x;
|
|
//safeVal.y = val.y < -1.0E9 ? -val.y : val.y;
|
|
real3 n = real3(val, 2.0 - abs(val.x) - abs(val.y));
|
|
return n;
|
|
}
|
|
|
|
//New - Unpack Hemi-Octahedral normals from color without normalizing vector or scaling
|
|
real3 UnpackHemiOctNormalsNoNormalize(real4 packedNormal)
|
|
{
|
|
#if defined(UNITY_ASTC_NORMALMAP_ENCODING)
|
|
real2 xy = 2.0 * real2(packedNormal.ag) - 1.0;
|
|
#elif defined(UNITY_NO_DXT5nm)
|
|
real2 xy = 2.0 * real2(packedNormal.rg) - 1.0;
|
|
#else
|
|
real2 xy = 2.0 * real2(packedNormal.r * packedNormal.a, packedNormal.g) - 1.0;
|
|
#endif
|
|
return UnpackNormalHemiOctEncodeNoNormalize(xy);
|
|
}
|
|
|
|
//New - Unpack Hemi-Octahedral normals from color with no scale factor
|
|
real3 UnpackHemiOctNormalsNoScale(real4 packedNormal)
|
|
{
|
|
return AccurateNormalize(UnpackHemiOctNormalsNoNormalize(packedNormal));
|
|
}
|
|
|
|
//New - Unpack Hemi-Octahedral normals from color
|
|
real3 UnpackHemiOctNormals(real4 packedNormal, real scale = 1.0)
|
|
{
|
|
|
|
real3 normal = UnpackHemiOctNormalsNoNormalize(packedNormal);
|
|
normal.xy *= scale;
|
|
return AccurateNormalize(normal);
|
|
}
|
|
|
|
#ifndef BUILTIN_TARGET_API
|
|
real3 UnpackNormal(real4 packedNormal)
|
|
{
|
|
//Use old normal functions if explicitly told to
|
|
|
|
#ifdef USE_STANDARD_NORMALMAPS
|
|
|
|
#if defined(UNITY_ASTC_NORMALMAP_ENCODING)
|
|
return UnpackNormalAG(packedNormal, 1.0);
|
|
#elif defined(UNITY_NO_DXT5nm)
|
|
return UnpackNormalRGBNoScale(packedNormal);
|
|
#else
|
|
// Compiler will optimize the scale away
|
|
return UnpackNormalmapRGorAG(packedNormal, 1.0);
|
|
#endif
|
|
|
|
#else
|
|
|
|
return UnpackHemiOctNormalsNoScale(packedNormal);
|
|
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
|
|
real3 UnpackNormalScale(real4 packedNormal, real bumpScale)
|
|
{
|
|
#if defined(USE_STANDARD_NORMALMAPS)
|
|
#if defined(UNITY_ASTC_NORMALMAP_ENCODING)
|
|
return UnpackNormalAG(packedNormal, bumpScale);
|
|
#elif defined(UNITY_NO_DXT5nm)
|
|
return UnpackNormalRGB(packedNormal, bumpScale);
|
|
#else
|
|
return UnpackNormalmapRGorAG(packedNormal, bumpScale);
|
|
#endif
|
|
#else
|
|
return UnpackHemiOctNormals(packedNormal, bumpScale);
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// HDR packing
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// HDR Packing not defined in GLES2
|
|
#if !defined(SHADER_API_GLES)
|
|
|
|
// Ref: http://realtimecollisiondetection.net/blog/?p=15
|
|
real4 PackToLogLuv(real3 vRGB)
|
|
{
|
|
// M matrix, for encoding
|
|
const real3x3 M = real3x3(
|
|
0.2209, 0.3390, 0.4184,
|
|
0.1138, 0.6780, 0.7319,
|
|
0.0102, 0.1130, 0.2969);
|
|
|
|
real4 vResult;
|
|
real3 Xp_Y_XYZp = mul(vRGB, M);
|
|
Xp_Y_XYZp = max(Xp_Y_XYZp, real3(1e-6, 1e-6, 1e-6));
|
|
vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;
|
|
real Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;
|
|
vResult.w = frac(Le);
|
|
vResult.z = (Le - (floor(vResult.w * 255.0)) / 255.0) / 255.0;
|
|
return vResult;
|
|
}
|
|
|
|
real3 UnpackFromLogLuv(real4 vLogLuv)
|
|
{
|
|
// Inverse M matrix, for decoding
|
|
const real3x3 InverseM = real3x3(
|
|
6.0014, -2.7008, -1.7996,
|
|
-1.3320, 3.1029, -5.7721,
|
|
0.3008, -1.0882, 5.6268);
|
|
|
|
real Le = vLogLuv.z * 255.0 + vLogLuv.w;
|
|
real3 Xp_Y_XYZp;
|
|
Xp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);
|
|
Xp_Y_XYZp.z = Xp_Y_XYZp.y / vLogLuv.y;
|
|
Xp_Y_XYZp.x = vLogLuv.x * Xp_Y_XYZp.z;
|
|
real3 vRGB = mul(Xp_Y_XYZp, InverseM);
|
|
return max(vRGB, real3(0.0, 0.0, 0.0));
|
|
}
|
|
|
|
// The standard 32-bit HDR color format
|
|
uint PackToR11G11B10f(float3 rgb)
|
|
{
|
|
uint r = (f32tof16(rgb.x) << 17) & 0xFFE00000;
|
|
uint g = (f32tof16(rgb.y) << 6) & 0x001FFC00;
|
|
uint b = (f32tof16(rgb.z) >> 5) & 0x000003FF;
|
|
return r | g | b;
|
|
}
|
|
|
|
float3 UnpackFromR11G11B10f(uint rgb)
|
|
{
|
|
float r = f16tof32((rgb >> 17) & 0x7FF0);
|
|
float g = f16tof32((rgb >> 6) & 0x7FF0);
|
|
float b = f16tof32((rgb << 5) & 0x7FE0);
|
|
return float3(r, g, b);
|
|
}
|
|
|
|
#endif // SHADER_API_GLES
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Color packing
|
|
//-----------------------------------------------------------------------------
|
|
|
|
float4 UnpackFromR8G8B8A8(uint rgba)
|
|
{
|
|
return float4(rgba & 255, (rgba >> 8) & 255, (rgba >> 16) & 255, (rgba >> 24) & 255) * (1.0 / 255);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Quaternion packing
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Ref: https://cedec.cesa.or.jp/2015/session/ENG/14698.html The Rendering Materials of Far Cry 4
|
|
|
|
/*
|
|
// This is GCN intrinsic
|
|
uint FindBiggestComponent(real4 q)
|
|
{
|
|
uint xyzIndex = CubeMapFaceID(q.x, q.y, q.z) * 0.5f;
|
|
uint wIndex = 3;
|
|
|
|
bool wBiggest = abs(q.w) > max3(abs(q.x), qbs(q.y), qbs(q.z));
|
|
|
|
return wBiggest ? wIndex : xyzIndex;
|
|
}
|
|
|
|
// Pack a quaternion into a 10:10:10:2
|
|
real4 PackQuat(real4 quat)
|
|
{
|
|
uint index = FindBiggestComponent(quat);
|
|
|
|
if (index == 0) quat = quat.yzwx;
|
|
if (index == 1) quat = quat.xzwy;
|
|
if (index == 2) quat = quat.xywz;
|
|
|
|
real4 packedQuat;
|
|
packedQuat.xyz = quat.xyz * FastSign(quat.w) * sqrt(0.5) + 0.5;
|
|
packedQuat.w = index / 3.0;
|
|
|
|
return packedQuat;
|
|
}
|
|
*/
|
|
|
|
// Unpack a quaternion from a 10:10:10:2
|
|
real4 UnpackQuat(real4 packedQuat)
|
|
{
|
|
uint index = (uint)(packedQuat.w * 3.0);
|
|
|
|
real4 quat;
|
|
quat.xyz = packedQuat.xyz * sqrt(2.0) - (1.0 / sqrt(2.0));
|
|
quat.w = sqrt(1.0 - saturate(dot(quat.xyz, quat.xyz)));
|
|
|
|
if (index == 0) quat = quat.wxyz;
|
|
if (index == 1) quat = quat.xwyz;
|
|
if (index == 2) quat = quat.xywz;
|
|
|
|
return quat;
|
|
}
|
|
|
|
// Integer and Float packing not defined in GLES2
|
|
#if !defined(SHADER_API_GLES)
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Integer packing
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Packs an integer stored using at most 'numBits' into a [0..1] real.
|
|
real PackInt(uint i, uint numBits)
|
|
{
|
|
uint maxInt = (1u << numBits) - 1u;
|
|
return saturate(i * rcp(maxInt));
|
|
}
|
|
|
|
// Unpacks a [0..1] real into an integer of size 'numBits'.
|
|
uint UnpackInt(real f, uint numBits)
|
|
{
|
|
uint maxInt = (1u << numBits) - 1u;
|
|
return (uint)(f * maxInt + 0.5); // Round instead of truncating
|
|
}
|
|
|
|
// Packs a [0..255] integer into a [0..1] real.
|
|
real PackByte(uint i)
|
|
{
|
|
return PackInt(i, 8);
|
|
}
|
|
|
|
// Unpacks a [0..1] real into a [0..255] integer.
|
|
uint UnpackByte(real f)
|
|
{
|
|
return UnpackInt(f, 8);
|
|
}
|
|
|
|
// Packs a [0..65535] integer into a [0..1] real.
|
|
real PackShort(uint i)
|
|
{
|
|
return PackInt(i, 16);
|
|
}
|
|
|
|
// Unpacks a [0..1] real into a [0..65535] integer.
|
|
uint UnpackShort(real f)
|
|
{
|
|
return UnpackInt(f, 16);
|
|
}
|
|
|
|
// Packs 8 lowermost bits of a [0..65535] integer into a [0..1] real.
|
|
real PackShortLo(uint i)
|
|
{
|
|
uint lo = BitFieldExtract(i, 0u, 8u);
|
|
return PackInt(lo, 8);
|
|
}
|
|
|
|
// Packs 8 uppermost bits of a [0..65535] integer into a [0..1] real.
|
|
real PackShortHi(uint i)
|
|
{
|
|
uint hi = BitFieldExtract(i, 8u, 8u);
|
|
return PackInt(hi, 8);
|
|
}
|
|
|
|
real Pack2Byte(real2 inputs)
|
|
{
|
|
real2 temp = inputs * real2(255.0, 255.0);
|
|
temp.x *= 256.0;
|
|
temp = round(temp);
|
|
real combined = temp.x + temp.y;
|
|
return combined * (1.0 / 65535.0);
|
|
}
|
|
|
|
real2 Unpack2Byte(real inputs)
|
|
{
|
|
real temp = round(inputs * 65535.0);
|
|
real ipart;
|
|
real fpart = modf(temp / 256.0, ipart);
|
|
real2 result = real2(ipart, round(256.0 * fpart));
|
|
return result * (1.0 / real2(255.0, 255.0));
|
|
}
|
|
|
|
// Encode a real in [0..1] and an int in [0..maxi - 1] as a real [0..1] to be store in log2(precision) bit
|
|
// maxi must be a power of two and define the number of bit dedicated 0..1 to the int part (log2(maxi))
|
|
// Example: precision is 256.0, maxi is 2, i is [0..1] encode on 1 bit. f is [0..1] encode on 7 bit.
|
|
// Example: precision is 256.0, maxi is 4, i is [0..3] encode on 2 bit. f is [0..1] encode on 6 bit.
|
|
// Example: precision is 256.0, maxi is 8, i is [0..7] encode on 3 bit. f is [0..1] encode on 5 bit.
|
|
// ...
|
|
// Example: precision is 1024.0, maxi is 8, i is [0..7] encode on 3 bit. f is [0..1] encode on 7 bit.
|
|
//...
|
|
real PackFloatInt(real f, uint i, real maxi, real precision)
|
|
{
|
|
// Constant
|
|
real precisionMinusOne = precision - 1.0;
|
|
real t1 = ((precision / maxi) - 1.0) / precisionMinusOne;
|
|
real t2 = (precision / maxi) / precisionMinusOne;
|
|
|
|
return t1 * f + t2 * real(i);
|
|
}
|
|
|
|
void UnpackFloatInt(real val, real maxi, real precision, out real f, out uint i)
|
|
{
|
|
// Constant
|
|
real precisionMinusOne = precision - 1.0;
|
|
real t1 = ((precision / maxi) - 1.0) / precisionMinusOne;
|
|
real t2 = (precision / maxi) / precisionMinusOne;
|
|
|
|
// extract integer part
|
|
i = int((val / t2) + rcp(precisionMinusOne)); // + rcp(precisionMinusOne) to deal with precision issue (can't use round() as val contain the floating number
|
|
// Now that we have i, solve formula in PackFloatInt for f
|
|
//f = (val - t2 * real(i)) / t1 => convert in mads form
|
|
f = saturate((-t2 * real(i) + val) / t1); // Saturate in case of precision issue
|
|
}
|
|
|
|
// Define various variante for ease of read
|
|
real PackFloatInt8bit(real f, uint i, real maxi)
|
|
{
|
|
return PackFloatInt(f, i, maxi, 256.0);
|
|
}
|
|
|
|
void UnpackFloatInt8bit(real val, real maxi, out real f, out uint i)
|
|
{
|
|
UnpackFloatInt(val, maxi, 256.0, f, i);
|
|
}
|
|
|
|
real PackFloatInt10bit(real f, uint i, real maxi)
|
|
{
|
|
return PackFloatInt(f, i, maxi, 1024.0);
|
|
}
|
|
|
|
void UnpackFloatInt10bit(real val, real maxi, out real f, out uint i)
|
|
{
|
|
UnpackFloatInt(val, maxi, 1024.0, f, i);
|
|
}
|
|
|
|
real PackFloatInt16bit(real f, uint i, real maxi)
|
|
{
|
|
return PackFloatInt(f, i, maxi, 65536.0);
|
|
}
|
|
|
|
void UnpackFloatInt16bit(real val, real maxi, out real f, out uint i)
|
|
{
|
|
UnpackFloatInt(val, maxi, 65536.0, f, i);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Float packing
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// src must be between 0.0 and 1.0
|
|
uint PackFloatToUInt(real src, uint offset, uint numBits)
|
|
{
|
|
return UnpackInt(src, numBits) << offset;
|
|
}
|
|
|
|
real UnpackUIntToFloat(uint src, uint offset, uint numBits)
|
|
{
|
|
uint maxInt = (1u << numBits) - 1u;
|
|
return real(BitFieldExtract(src, offset, numBits)) * rcp(maxInt);
|
|
}
|
|
|
|
uint PackToR10G10B10A2(real4 rgba)
|
|
{
|
|
return (PackFloatToUInt(rgba.x, 0, 10) |
|
|
PackFloatToUInt(rgba.y, 10, 10) |
|
|
PackFloatToUInt(rgba.z, 20, 10) |
|
|
PackFloatToUInt(rgba.w, 30, 2));
|
|
}
|
|
|
|
real4 UnpackFromR10G10B10A2(uint rgba)
|
|
{
|
|
real4 output;
|
|
output.x = UnpackUIntToFloat(rgba, 0, 10);
|
|
output.y = UnpackUIntToFloat(rgba, 10, 10);
|
|
output.z = UnpackUIntToFloat(rgba, 20, 10);
|
|
output.w = UnpackUIntToFloat(rgba, 30, 2);
|
|
return output;
|
|
}
|
|
|
|
// Both the input and the output are in the [0, 1] range.
|
|
real2 PackFloatToR8G8(real f)
|
|
{
|
|
uint i = UnpackShort(f);
|
|
return real2(PackShortLo(i), PackShortHi(i));
|
|
}
|
|
|
|
// Both the input and the output are in the [0, 1] range.
|
|
real UnpackFloatFromR8G8(real2 f)
|
|
{
|
|
uint lo = UnpackByte(f.x);
|
|
uint hi = UnpackByte(f.y);
|
|
uint cb = (hi << 8) + lo;
|
|
return PackShort(cb);
|
|
}
|
|
|
|
// Pack float2 (each of 12 bit) in 888
|
|
float3 PackFloat2To888(float2 f)
|
|
{
|
|
uint2 i = (uint2)(f * 4095.5);
|
|
uint2 hi = i >> 8;
|
|
uint2 lo = i & 255;
|
|
// 8 bit in lo, 4 bit in hi
|
|
uint3 cb = uint3(lo, hi.x | (hi.y << 4));
|
|
|
|
return cb / 255.0;
|
|
}
|
|
|
|
// Unpack 2 float of 12bit packed into a 888
|
|
float2 Unpack888ToFloat2(float3 x)
|
|
{
|
|
uint3 i = (uint3)(x * 255.5); // +0.5 to fix precision error on iOS
|
|
// 8 bit in lo, 4 bit in hi
|
|
uint hi = i.z >> 4;
|
|
uint lo = i.z & 15;
|
|
uint2 cb = i.xy | uint2(lo << 8, hi << 8);
|
|
|
|
return cb / 4095.0;
|
|
}
|
|
#endif // SHADER_API_GLES
|
|
|
|
// Pack 2 float values from the [0, 1] range, to an 8 bits float from the [0, 1] range
|
|
float PackFloat2To8(float2 f)
|
|
{
|
|
float x_expanded = f.x * 15.0; // f.x encoded over 4 bits, can have 2^4 = 16 distinct values mapped to [0, 1, ..., 15]
|
|
float y_expanded = f.y * 15.0; // f.y encoded over 4 bits, can have 2^4 = 16 distinct values mapped to [0, 1, ..., 15]
|
|
float x_y_expanded = x_expanded * 16.0 + y_expanded; // f.x encoded over higher bits, f.y encoded over the lower bits - x_y values in range [0, 1, ..., 255]
|
|
return x_y_expanded / 255.0;
|
|
|
|
// above 4 lines equivalent to:
|
|
//return (16.0 * f.x + f.y) / 17.0;
|
|
}
|
|
|
|
// Unpack 2 float values from the [0, 1] range, packed in an 8 bits float from the [0, 1] range
|
|
float2 Unpack8ToFloat2(float f)
|
|
{
|
|
float x_y_expanded = 255.0 * f;
|
|
float x_expanded = floor(x_y_expanded / 16.0);
|
|
float y_expanded = x_y_expanded - 16.0 * x_expanded;
|
|
float x = x_expanded / 15.0;
|
|
float y = y_expanded / 15.0;
|
|
return float2(x, y);
|
|
}
|
|
|
|
#if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3
|
|
#pragma warning (enable : 3205) // conversion of larger type to smaller
|
|
#endif
|
|
|
|
#endif // UNITY_PACKING_INCLUDED
|