100 lines
4.9 KiB
HLSL
100 lines
4.9 KiB
HLSL
// this produces an orthonormal basis of the tangent and bitangent WITHOUT vertex level tangent/bitangent for any UV including procedurally generated
|
|
// method released with the demo for publication of "bump mapping unparametrized surfaces on the GPU"
|
|
// http://mmikkelsen3d.blogspot.com/2011/07/derivative-maps.html
|
|
void SurfaceGradientGenBasisTB(float3 nrmVertexNormal, float3 sigmaX, float3 sigmaY, float flipSign, float2 texST, out float3 vT, out float3 vB)
|
|
{
|
|
float2 dSTdx = ddx_fine(texST), dSTdy = ddy_fine(texST);
|
|
|
|
float det = dot(dSTdx, float2(dSTdy.y, -dSTdy.x));
|
|
float sign_det = det < 0 ? -1 : 1;
|
|
|
|
// invC0 represents (dXds, dYds); but we don't divide by determinant (scale by sign instead)
|
|
float2 invC0 = sign_det * float2(dSTdy.y, -dSTdx.y);
|
|
vT = sigmaX * invC0.x + sigmaY * invC0.y;
|
|
if (abs(det) > 0.0)
|
|
vT = normalize(vT);
|
|
vB = (sign_det * flipSign) * cross(nrmVertexNormal, vT);
|
|
}
|
|
|
|
// surface gradient from an on the fly TBN (deriv obtained using tspaceNormalToDerivative()) or from conventional vertex level TBN (mikktspace compliant and deriv obtained using tspaceNormalToDerivative())
|
|
real3 SurfaceGradientFromTBN(real2 deriv, real3 vT, real3 vB)
|
|
{
|
|
return deriv.x * vT + deriv.y * vB;
|
|
}
|
|
|
|
// surface gradient from an already generated "normal" such as from an object or world space normal map
|
|
// CAUTION: nrmVertexNormal and v must be in the same space. i.e world or object
|
|
// this allows us to mix the contribution together with a series of other contributions including tangent space normals
|
|
// v does not need to be unit length as long as it establishes the direction.
|
|
real3 SurfaceGradientFromPerturbedNormal(real3 nrmVertexNormal, real3 v)
|
|
{
|
|
real3 n = nrmVertexNormal;
|
|
real s = 1.0 / max(REAL_EPS, abs(dot(n, v)));
|
|
return s * (dot(n, v) * n - v);
|
|
}
|
|
|
|
// used to produce a surface gradient from the gradient of a volume bump function such as a volume of perlin noise.
|
|
// equation 2. in "bump mapping unparametrized surfaces on the GPU".
|
|
// Observe the difference in figure 2. between using the gradient vs. the surface gradient to do bump mapping (the original method is proved wrong in the paper!).
|
|
real3 SurfaceGradientFromVolumeGradient(real3 nrmVertexNormal, real3 grad)
|
|
{
|
|
return grad - dot(nrmVertexNormal, grad) * nrmVertexNormal;
|
|
}
|
|
|
|
// triplanar projection considered special case of volume bump map
|
|
// described here: http://mmikkelsen3d.blogspot.com/2013/10/volume-height-maps-and-triplanar-bump.html
|
|
// derivs obtained using tspaceNormalToDerivative() and weights using computeTriplanarWeights().
|
|
real3 SurfaceGradientFromTriplanarProjection(real3 nrmVertexNormal, real3 triplanarWeights, real2 deriv_xplane, real2 deriv_yplane, real2 deriv_zplane)
|
|
{
|
|
const real w0 = triplanarWeights.x, w1 = triplanarWeights.y, w2 = triplanarWeights.z;
|
|
|
|
// Assume derivXplane, derivYPlane and derivZPlane sampled using (z,y), (x,z) and (x,y) respectively
|
|
// (ie using Morten's convention http://jcgt.org/published/0009/03/04/ p80-81 for left handed worldspace)
|
|
// positive scales of the look-up coordinate will work as well but for negative scales the derivative components will need to be negated accordingly.
|
|
real3 volumeGrad = real3(w2 * deriv_zplane.x + w1 * deriv_yplane.x, w2 * deriv_zplane.y + w0 * deriv_xplane.y, w0 * deriv_xplane.x + w1 * deriv_yplane.y);
|
|
|
|
return SurfaceGradientFromVolumeGradient(nrmVertexNormal, volumeGrad);
|
|
}
|
|
|
|
real3 SurfaceGradientResolveNormal(real3 nrmVertexNormal, real3 surfGrad)
|
|
{
|
|
return SafeNormalize(nrmVertexNormal - surfGrad);
|
|
}
|
|
|
|
real2 ConvertTangentSpaceNormalToHeightMapGradient(real2 normalXY, real rcpNormalZ, real scale)
|
|
{
|
|
// scale * (-normal.xy / normal.z)
|
|
return normalXY * (-rcpNormalZ * scale);
|
|
}
|
|
|
|
real3 SurfaceGradientFromTangentSpaceNormalAndFromTBN(real3 normalTS, real3 vT, real3 vB, real scale = 1.0)
|
|
{
|
|
float2 deriv = ConvertTangentSpaceNormalToHeightMapGradient(normalTS.xy, rcp(max(normalTS.z, REAL_EPS)), scale);
|
|
return SurfaceGradientFromTBN(deriv, vT, vB);
|
|
}
|
|
|
|
// Converts tangent space normal to slopes (height map gradient).
|
|
real2 UnpackDerivativeNormalRGB(real4 packedNormal, real scale = 1.0)
|
|
{
|
|
real3 vT = packedNormal.rgb * 2.0 - 1.0; // Unsigned to signed
|
|
real rcpZ = rcp(max(vT.z, REAL_EPS)); // Clamp to avoid INF
|
|
|
|
return ConvertTangentSpaceNormalToHeightMapGradient(vT.xy, rcpZ, scale);
|
|
}
|
|
|
|
// Converts tangent space normal to slopes (height map gradient).
|
|
real2 UnpackDerivativeNormalAG(real4 packedNormal, real scale = 1.0)
|
|
{
|
|
real2 vT = packedNormal.ag * 2.0 - 1.0; // Unsigned to signed
|
|
real rcpZ = rsqrt(max(1 - Sq(vT.x) - Sq(vT.y), HALF_MIN_SQRT)); // Clamp to avoid INF
|
|
|
|
return ConvertTangentSpaceNormalToHeightMapGradient(vT.xy, rcpZ, scale);
|
|
}
|
|
|
|
// Unpack normal as DXT5nm (1, y, 0, x) or BC5 (x, y, 0, 1)
|
|
real2 UnpackDerivativeNormalRGorAG(real4 packedNormal, real scale = 1.0)
|
|
{
|
|
// Convert to (?, y, 0, x)
|
|
packedNormal.a *= packedNormal.r;
|
|
return UnpackDerivativeNormalAG(packedNormal, scale);
|
|
}
|