initial commit
This commit is contained in:
parent
6715289efe
commit
788c3389af
37645 changed files with 2526849 additions and 80 deletions
|
|
@ -0,0 +1,230 @@
|
|||
using System;
|
||||
using System.Collections.Generic;
|
||||
using UnityEngine.Assertions;
|
||||
using UnityEngine.Rendering;
|
||||
|
||||
namespace UnityEngine.Rendering
|
||||
{
|
||||
/// <summary>
|
||||
/// Implement a multiple buffering for RenderTextures.
|
||||
/// </summary>
|
||||
/// <exemple>
|
||||
/// <code>
|
||||
/// enum BufferType
|
||||
/// {
|
||||
/// Color,
|
||||
/// Depth
|
||||
/// }
|
||||
///
|
||||
/// void Render()
|
||||
/// {
|
||||
/// var camera = GetCamera();
|
||||
/// var buffers = GetFrameHistoryBuffersFor(camera);
|
||||
///
|
||||
/// // Set reference size in case the rendering size changed this frame
|
||||
/// buffers.SetReferenceSize(
|
||||
/// GetCameraWidth(camera), GetCameraHeight(camera),
|
||||
/// GetCameraUseMSAA(camera), GetCameraMSAASamples(camera)
|
||||
/// );
|
||||
/// buffers.Swap();
|
||||
///
|
||||
/// var currentColor = buffer.GetFrameRT((int)BufferType.Color, 0);
|
||||
/// if (currentColor == null) // Buffer was not allocated
|
||||
/// {
|
||||
/// buffer.AllocBuffer(
|
||||
/// (int)BufferType.Color, // Color buffer id
|
||||
/// ColorBufferAllocator, // Custom functor to implement allocation
|
||||
/// 2 // Use 2 RT for this buffer for double buffering
|
||||
/// );
|
||||
/// currentColor = buffer.GetFrameRT((int)BufferType.Color, 0);
|
||||
/// }
|
||||
///
|
||||
/// var previousColor = buffers.GetFrameRT((int)BufferType.Color, 1);
|
||||
///
|
||||
/// // Use previousColor and write into currentColor
|
||||
/// }
|
||||
/// </code>
|
||||
/// </exemple>
|
||||
public class BufferedRTHandleSystem : IDisposable
|
||||
{
|
||||
Dictionary<int, RTHandle[]> m_RTHandles = new Dictionary<int, RTHandle[]>();
|
||||
|
||||
RTHandleSystem m_RTHandleSystem = new RTHandleSystem();
|
||||
bool m_DisposedValue = false;
|
||||
|
||||
/// <summary>
|
||||
/// Maximum allocated width of the Buffered RTHandle System
|
||||
/// </summary>
|
||||
public int maxWidth { get { return m_RTHandleSystem.GetMaxWidth(); } }
|
||||
/// <summary>
|
||||
/// Maximum allocated height of the Buffered RTHandle System
|
||||
/// </summary>
|
||||
public int maxHeight { get { return m_RTHandleSystem.GetMaxHeight(); } }
|
||||
/// <summary>
|
||||
/// Current properties of the Buffered RTHandle System
|
||||
/// </summary>
|
||||
public RTHandleProperties rtHandleProperties { get { return m_RTHandleSystem.rtHandleProperties; } }
|
||||
|
||||
/// <summary>
|
||||
/// Return the frame RT or null.
|
||||
/// </summary>
|
||||
/// <param name="bufferId">Defines the buffer to use.</param>
|
||||
/// <param name="frameIndex"></param>
|
||||
/// <returns>The frame RT or null when the <paramref name="bufferId"/> was not previously allocated (<see cref="BufferedRTHandleSystem.AllocBuffer(int, Func{RTHandleSystem, int, RTHandle}, int)" />).</returns>
|
||||
public RTHandle GetFrameRT(int bufferId, int frameIndex)
|
||||
{
|
||||
if (!m_RTHandles.ContainsKey(bufferId))
|
||||
return null;
|
||||
|
||||
Assert.IsTrue(frameIndex >= 0 && frameIndex < m_RTHandles[bufferId].Length);
|
||||
|
||||
return m_RTHandles[bufferId][frameIndex];
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate RT handles for a buffer.
|
||||
/// </summary>
|
||||
/// <param name="bufferId">The buffer to allocate.</param>
|
||||
/// <param name="allocator">The functor to use for allocation.</param>
|
||||
/// <param name="bufferCount">The number of RT handles for this buffer.</param>
|
||||
public void AllocBuffer(
|
||||
int bufferId,
|
||||
Func<RTHandleSystem, int, RTHandle> allocator,
|
||||
int bufferCount
|
||||
)
|
||||
{
|
||||
var buffer = new RTHandle[bufferCount];
|
||||
m_RTHandles.Add(bufferId, buffer);
|
||||
|
||||
// First is autoresized
|
||||
buffer[0] = allocator(m_RTHandleSystem, 0);
|
||||
|
||||
// Other are resized on demand
|
||||
for (int i = 1, c = buffer.Length; i < c; ++i)
|
||||
{
|
||||
buffer[i] = allocator(m_RTHandleSystem, i);
|
||||
m_RTHandleSystem.SwitchResizeMode(buffer[i], RTHandleSystem.ResizeMode.OnDemand);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Release a buffer
|
||||
/// </summary>
|
||||
/// <param name="bufferId">Id of the buffer that needs to be released.</param>
|
||||
public void ReleaseBuffer(int bufferId)
|
||||
{
|
||||
if (m_RTHandles.TryGetValue(bufferId, out var buffers))
|
||||
{
|
||||
foreach (var rt in buffers)
|
||||
m_RTHandleSystem.Release(rt);
|
||||
}
|
||||
|
||||
m_RTHandles.Remove(bufferId);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Swap buffers Set the reference size for this RT Handle System (<see cref="RTHandleSystem.SetReferenceSize(int, int, bool)"/>)
|
||||
/// </summary>
|
||||
/// <param name="width">The width of the RTs of this buffer.</param>
|
||||
/// <param name="height">The height of the RTs of this buffer.</param>
|
||||
public void SwapAndSetReferenceSize(int width, int height)
|
||||
{
|
||||
Swap();
|
||||
m_RTHandleSystem.SetReferenceSize(width, height);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Reset the reference size of the system and reallocate all textures.
|
||||
/// </summary>
|
||||
/// <param name="width">New width.</param>
|
||||
/// <param name="height">New height.</param>
|
||||
public void ResetReferenceSize(int width, int height)
|
||||
{
|
||||
m_RTHandleSystem.ResetReferenceSize(width, height);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Queries the number of RT handle buffers allocated for a buffer ID.
|
||||
/// </summary>
|
||||
/// <param name="bufferId">The buffer ID to query.</param>
|
||||
public int GetNumFramesAllocated(int bufferId)
|
||||
{
|
||||
if (!m_RTHandles.ContainsKey(bufferId))
|
||||
return 0;
|
||||
|
||||
return m_RTHandles[bufferId].Length;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns the ratio against the current target's max resolution
|
||||
/// </summary>
|
||||
/// <param name="width">width to utilize</param>
|
||||
/// <param name="height">height to utilize</param>
|
||||
/// <returns> retruns the width,height / maxTargetSize.xy ratio. </returns>
|
||||
public Vector2 CalculateRatioAgainstMaxSize(int width, int height)
|
||||
{
|
||||
return m_RTHandleSystem.CalculateRatioAgainstMaxSize(new Vector2Int(width, height));
|
||||
}
|
||||
|
||||
void Swap()
|
||||
{
|
||||
foreach (var item in m_RTHandles)
|
||||
{
|
||||
// Do not index out of bounds...
|
||||
if (item.Value.Length > 1)
|
||||
{
|
||||
var nextFirst = item.Value[item.Value.Length - 1];
|
||||
for (int i = 0, c = item.Value.Length - 1; i < c; ++i)
|
||||
item.Value[i + 1] = item.Value[i];
|
||||
item.Value[0] = nextFirst;
|
||||
|
||||
// First is autoresize, other are on demand
|
||||
m_RTHandleSystem.SwitchResizeMode(item.Value[0], RTHandleSystem.ResizeMode.Auto);
|
||||
m_RTHandleSystem.SwitchResizeMode(item.Value[1], RTHandleSystem.ResizeMode.OnDemand);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_RTHandleSystem.SwitchResizeMode(item.Value[0], RTHandleSystem.ResizeMode.Auto);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Dispose(bool disposing)
|
||||
{
|
||||
if (!m_DisposedValue)
|
||||
{
|
||||
if (disposing)
|
||||
{
|
||||
ReleaseAll();
|
||||
m_RTHandleSystem.Dispose();
|
||||
m_RTHandleSystem = null;
|
||||
}
|
||||
|
||||
m_DisposedValue = true;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Dispose implementation
|
||||
/// </summary>
|
||||
public void Dispose()
|
||||
{
|
||||
Dispose(true);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Deallocate and clear all buffers.
|
||||
/// </summary>
|
||||
public void ReleaseAll()
|
||||
{
|
||||
foreach (var item in m_RTHandles)
|
||||
{
|
||||
for (int i = 0, c = item.Value.Length; i < c; ++i)
|
||||
{
|
||||
m_RTHandleSystem.Release(item.Value[i]);
|
||||
}
|
||||
}
|
||||
m_RTHandles.Clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
fileFormatVersion: 2
|
||||
guid: cc56f4b85f1be9749add0bb4a25a4e4b
|
||||
MonoImporter:
|
||||
externalObjects: {}
|
||||
serializedVersion: 2
|
||||
defaultReferences: []
|
||||
executionOrder: 0
|
||||
icon: {instanceID: 0}
|
||||
userData:
|
||||
assetBundleName:
|
||||
assetBundleVariant:
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
namespace UnityEngine.Rendering
|
||||
{
|
||||
/// <summary>
|
||||
/// Bit depths of a Depth render texture.
|
||||
/// Some values may not be supported on all platforms.
|
||||
/// </summary>
|
||||
public enum DepthBits
|
||||
{
|
||||
/// <summary>No Depth Buffer.</summary>
|
||||
None = 0,
|
||||
/// <summary>8 bits Depth Buffer.</summary>
|
||||
Depth8 = 8,
|
||||
/// <summary>16 bits Depth Buffer.</summary>
|
||||
Depth16 = 16,
|
||||
/// <summary>24 bits Depth Buffer.</summary>
|
||||
Depth24 = 24,
|
||||
/// <summary>32 bits Depth Buffer.</summary>
|
||||
Depth32 = 32
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
fileFormatVersion: 2
|
||||
guid: d063f57ca4b7cd346a14a1be20de65b4
|
||||
MonoImporter:
|
||||
externalObjects: {}
|
||||
serializedVersion: 2
|
||||
defaultReferences: []
|
||||
executionOrder: 0
|
||||
icon: {instanceID: 0}
|
||||
userData:
|
||||
assetBundleName:
|
||||
assetBundleVariant:
|
||||
|
|
@ -0,0 +1,17 @@
|
|||
namespace UnityEngine.Rendering
|
||||
{
|
||||
/// <summary>
|
||||
/// Number of MSAA samples.
|
||||
/// </summary>
|
||||
public enum MSAASamples
|
||||
{
|
||||
/// <summary>No MSAA.</summary>
|
||||
None = 1,
|
||||
/// <summary>MSAA 2X.</summary>
|
||||
MSAA2x = 2,
|
||||
/// <summary>MSAA 4X.</summary>
|
||||
MSAA4x = 4,
|
||||
/// <summary>MSAA 8X.</summary>
|
||||
MSAA8x = 8
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
fileFormatVersion: 2
|
||||
guid: 9abeb67ba9136f940a7b78095f5b43d8
|
||||
MonoImporter:
|
||||
externalObjects: {}
|
||||
serializedVersion: 2
|
||||
defaultReferences: []
|
||||
executionOrder: 0
|
||||
icon: {instanceID: 0}
|
||||
userData:
|
||||
assetBundleName:
|
||||
assetBundleVariant:
|
||||
|
|
@ -0,0 +1,341 @@
|
|||
using System.Collections.Generic;
|
||||
using UnityEngine.Experimental.Rendering;
|
||||
|
||||
namespace UnityEngine.Rendering
|
||||
{
|
||||
/// <summary>
|
||||
/// Texture atlas with rectangular power of two size.
|
||||
/// </summary>
|
||||
public class PowerOfTwoTextureAtlas : Texture2DAtlas
|
||||
{
|
||||
readonly int m_MipPadding;
|
||||
const float k_MipmapFactorApprox = 1.33f;
|
||||
|
||||
private Dictionary<int, Vector2Int> m_RequestedTextures = new Dictionary<int, Vector2Int>();
|
||||
|
||||
/// <summary>
|
||||
/// Create a new texture atlas, must have power of two size.
|
||||
/// </summary>
|
||||
/// <param name="size">The size of the atlas in pixels. Must be power of two.</param>
|
||||
/// <param name="mipPadding">Amount of mip padding in power of two.</param>
|
||||
/// <param name="format">Atlas texture format</param>
|
||||
/// <param name="filterMode">Atlas texture filter mode.</param>
|
||||
/// <param name="name">Name of the atlas</param>
|
||||
/// <param name="useMipMap">Use mip maps</param>
|
||||
public PowerOfTwoTextureAtlas(int size, int mipPadding, GraphicsFormat format, FilterMode filterMode = FilterMode.Point, string name = "", bool useMipMap = true)
|
||||
: base(size, size, format, filterMode, true, name, useMipMap)
|
||||
{
|
||||
this.m_MipPadding = mipPadding;
|
||||
|
||||
// Check if size is a power of two
|
||||
if ((size & (size - 1)) != 0)
|
||||
Debug.Assert(false, "Power of two atlas was constructed with non power of two size: " + size);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Used mipmap padding size in power of two.
|
||||
/// </summary>
|
||||
public int mipPadding => m_MipPadding;
|
||||
|
||||
int GetTexturePadding() => (int)Mathf.Pow(2, m_MipPadding) * 2;
|
||||
|
||||
/// <summary>
|
||||
/// Get location of the actual texture data without padding in the atlas.
|
||||
/// </summary>
|
||||
/// <param name="texture">The source texture cached in the atlas.</param>
|
||||
/// <param name="scaleOffset">Cached atlas location (scale and offset) for the source texture.</param>
|
||||
/// <returns>Scale and offset for the source texture without padding.</returns>
|
||||
public Vector4 GetPayloadScaleOffset(Texture texture, in Vector4 scaleOffset)
|
||||
{
|
||||
int pixelPadding = GetTexturePadding();
|
||||
Vector2 paddingSize = Vector2.one * pixelPadding;
|
||||
Vector2 textureSize = GetPowerOfTwoTextureSize(texture);
|
||||
return GetPayloadScaleOffset(textureSize, paddingSize, scaleOffset);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get location of the actual texture data without padding in the atlas.
|
||||
/// </summary>
|
||||
/// <param name="textureSize">Size of the source texture</param>
|
||||
/// <param name="paddingSize">Padding size used for the source texture. </param>
|
||||
/// <param name="scaleOffset">Cached atlas location (scale and offset) for the source texture.</param>
|
||||
/// <returns>Scale and offset for the source texture without padding.</returns>
|
||||
static public Vector4 GetPayloadScaleOffset(in Vector2 textureSize, in Vector2 paddingSize, in Vector4 scaleOffset)
|
||||
{
|
||||
// Scale, Offset is a padded atlas sub-texture rectangle.
|
||||
// Actual texture data (payload) is inset, i.e. padded inwards.
|
||||
Vector2 subTexScale = new Vector2(scaleOffset.x, scaleOffset.y);
|
||||
Vector2 subTexOffset = new Vector2(scaleOffset.z, scaleOffset.w);
|
||||
|
||||
// NOTE: Should match Blit() padding calculations.
|
||||
Vector2 scalePadding = ((textureSize + paddingSize) / textureSize); // Size of padding (sampling) rectangle relative to the payload texture.
|
||||
Vector2 offsetPadding = (paddingSize / 2.0f) / (textureSize + paddingSize); // Padding offset in the padding rectangle
|
||||
|
||||
Vector2 insetScale = subTexScale / scalePadding; // Size of payload rectangle in sub-tex
|
||||
Vector2 insetOffset = subTexOffset + subTexScale * offsetPadding; // Offset of payload rectangle in sub-tex
|
||||
|
||||
return new Vector4(insetScale.x, insetScale.y, insetOffset.x, insetOffset.y);
|
||||
}
|
||||
|
||||
private enum BlitType
|
||||
{
|
||||
Padding,
|
||||
PaddingMultiply,
|
||||
OctahedralPadding,
|
||||
OctahedralPaddingMultiply,
|
||||
}
|
||||
|
||||
private void Blit2DTexture(CommandBuffer cmd, Vector4 scaleOffset, Texture texture, Vector4 sourceScaleOffset, bool blitMips, BlitType blitType)
|
||||
{
|
||||
int mipCount = GetTextureMipmapCount(texture.width, texture.height);
|
||||
int pixelPadding = GetTexturePadding();
|
||||
Vector2 textureSize = GetPowerOfTwoTextureSize(texture);
|
||||
bool bilinear = texture.filterMode != FilterMode.Point;
|
||||
|
||||
if (!blitMips)
|
||||
mipCount = 1;
|
||||
|
||||
using (new ProfilingScope(cmd, ProfilingSampler.Get(CoreProfileId.BlitTextureInPotAtlas)))
|
||||
{
|
||||
for (int mipLevel = 0; mipLevel < mipCount; mipLevel++)
|
||||
{
|
||||
cmd.SetRenderTarget(m_AtlasTexture, mipLevel);
|
||||
switch (blitType)
|
||||
{
|
||||
case BlitType.Padding: Blitter.BlitQuadWithPadding(cmd, texture, textureSize, sourceScaleOffset, scaleOffset, mipLevel, bilinear, pixelPadding); break;
|
||||
case BlitType.PaddingMultiply: Blitter.BlitQuadWithPaddingMultiply(cmd, texture, textureSize, sourceScaleOffset, scaleOffset, mipLevel, bilinear, pixelPadding); break;
|
||||
case BlitType.OctahedralPadding: Blitter.BlitOctahedralWithPadding(cmd, texture, textureSize, sourceScaleOffset, scaleOffset, mipLevel, bilinear, pixelPadding); break;
|
||||
case BlitType.OctahedralPaddingMultiply: Blitter.BlitOctahedralWithPaddingMultiply(cmd, texture, textureSize, sourceScaleOffset, scaleOffset, mipLevel, bilinear, pixelPadding); break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Blit texture into the atlas with padding.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="scaleOffset">Destination scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="texture">Source Texture</param>
|
||||
/// <param name="sourceScaleOffset">Source scale (.xy) and offset(.zw).</param>
|
||||
/// <param name="blitMips">Blit mip maps.</param>
|
||||
/// <param name="overrideInstanceID">Override texture instance ID.</param>
|
||||
public override void BlitTexture(CommandBuffer cmd, Vector4 scaleOffset, Texture texture, Vector4 sourceScaleOffset, bool blitMips = true, int overrideInstanceID = -1)
|
||||
{
|
||||
// We handle ourself the 2D blit because cookies needs mipPadding for trilinear filtering
|
||||
if (Is2D(texture))
|
||||
{
|
||||
Blit2DTexture(cmd, scaleOffset, texture, sourceScaleOffset, blitMips, BlitType.Padding);
|
||||
MarkGPUTextureValid(overrideInstanceID != -1 ? overrideInstanceID : texture.GetInstanceID(), blitMips);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Blit texture into the atlas with padding and blending.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="scaleOffset">Destination scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="texture">Source Texture</param>
|
||||
/// <param name="sourceScaleOffset">Source scale (.xy) and offset(.zw).</param>
|
||||
/// <param name="blitMips">Blit mip maps.</param>
|
||||
/// <param name="overrideInstanceID">Override texture instance ID.</param>
|
||||
public void BlitTextureMultiply(CommandBuffer cmd, Vector4 scaleOffset, Texture texture, Vector4 sourceScaleOffset, bool blitMips = true, int overrideInstanceID = -1)
|
||||
{
|
||||
// We handle ourself the 2D blit because cookies needs mipPadding for trilinear filtering
|
||||
if (Is2D(texture))
|
||||
{
|
||||
Blit2DTexture(cmd, scaleOffset, texture, sourceScaleOffset, blitMips, BlitType.PaddingMultiply);
|
||||
MarkGPUTextureValid(overrideInstanceID != -1 ? overrideInstanceID : texture.GetInstanceID(), blitMips);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Blit octahedral texture into the atlas with padding.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="scaleOffset">Destination scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="texture">Source Texture</param>
|
||||
/// <param name="sourceScaleOffset">Source scale (.xy) and offset(.zw).</param>
|
||||
/// <param name="blitMips">Blit mip maps.</param>
|
||||
/// <param name="overrideInstanceID">Override texture instance ID.</param>
|
||||
public override void BlitOctahedralTexture(CommandBuffer cmd, Vector4 scaleOffset, Texture texture, Vector4 sourceScaleOffset, bool blitMips = true, int overrideInstanceID = -1)
|
||||
{
|
||||
// We handle ourself the 2D blit because cookies needs mipPadding for trilinear filtering
|
||||
if (Is2D(texture))
|
||||
{
|
||||
Blit2DTexture(cmd, scaleOffset, texture, sourceScaleOffset, blitMips, BlitType.OctahedralPadding);
|
||||
MarkGPUTextureValid(overrideInstanceID != -1 ? overrideInstanceID : texture.GetInstanceID(), blitMips);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Blit octahedral texture into the atlas with padding.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="scaleOffset">Destination scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="texture">Source Texture</param>
|
||||
/// <param name="sourceScaleOffset">Source scale (.xy) and offset(.zw).</param>
|
||||
/// <param name="blitMips">Blit mip maps.</param>
|
||||
/// <param name="overrideInstanceID">Override texture instance ID.</param>
|
||||
public void BlitOctahedralTextureMultiply(CommandBuffer cmd, Vector4 scaleOffset, Texture texture, Vector4 sourceScaleOffset, bool blitMips = true, int overrideInstanceID = -1)
|
||||
{
|
||||
// We handle ourself the 2D blit because cookies needs mipPadding for trilinear filtering
|
||||
if (Is2D(texture))
|
||||
{
|
||||
Blit2DTexture(cmd, scaleOffset, texture, sourceScaleOffset, blitMips, BlitType.OctahedralPaddingMultiply);
|
||||
MarkGPUTextureValid(overrideInstanceID != -1 ? overrideInstanceID : texture.GetInstanceID(), blitMips);
|
||||
}
|
||||
}
|
||||
|
||||
void TextureSizeToPowerOfTwo(Texture texture, ref int width, ref int height)
|
||||
{
|
||||
// Change the width and height of the texture to be power of two
|
||||
width = Mathf.NextPowerOfTwo(width);
|
||||
height = Mathf.NextPowerOfTwo(height);
|
||||
}
|
||||
|
||||
Vector2 GetPowerOfTwoTextureSize(Texture texture)
|
||||
{
|
||||
int width = texture.width, height = texture.height;
|
||||
|
||||
TextureSizeToPowerOfTwo(texture, ref width, ref height);
|
||||
return new Vector2(width, height);
|
||||
}
|
||||
|
||||
// Override the behavior when we add a texture so all non-pot textures are blitted to a pot target zone
|
||||
/// <summary>
|
||||
/// Allocate space from the atlas for a texture and copy texture contents into the atlas.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="scaleOffset">Allocated scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="texture">Source Texture</param>
|
||||
/// <param name="width">Request width in pixels.</param>
|
||||
/// <param name="height">Request height in pixels.</param>
|
||||
/// <param name="overrideInstanceID">Override texture instance ID.</param>
|
||||
/// <returns>True on success, false otherwise.</returns>
|
||||
public override bool AllocateTexture(CommandBuffer cmd, ref Vector4 scaleOffset, Texture texture, int width, int height, int overrideInstanceID = -1)
|
||||
{
|
||||
// This atlas only supports square textures
|
||||
if (height != width)
|
||||
{
|
||||
Debug.LogError("Can't place " + texture + " in the atlas " + m_AtlasTexture.name + ": Only squared texture are allowed in this atlas.");
|
||||
return false;
|
||||
}
|
||||
|
||||
TextureSizeToPowerOfTwo(texture, ref height, ref width);
|
||||
|
||||
return base.AllocateTexture(cmd, ref scaleOffset, texture, width, height);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Clear tracked requested textures.
|
||||
/// </summary>
|
||||
public void ResetRequestedTexture() => m_RequestedTextures.Clear();
|
||||
|
||||
/// <summary>
|
||||
/// Reserve space from atlas for a texture.
|
||||
/// </summary>
|
||||
/// <param name="texture">Source texture.</param>
|
||||
/// <returns>True on success, false otherwise.</returns>
|
||||
public bool ReserveSpace(Texture texture) => ReserveSpace(texture, texture.width, texture.height);
|
||||
|
||||
/// <summary>
|
||||
/// Reserve space from atlas for a texture.
|
||||
/// </summary>
|
||||
/// <param name="texture">Source texture.</param>
|
||||
/// <param name="width">Request width in pixels.</param>
|
||||
/// <param name="height">Request height in pixels.</param>
|
||||
/// <returns>True on success, false otherwise.</returns>
|
||||
public bool ReserveSpace(Texture texture, int width, int height)
|
||||
=> ReserveSpace(GetTextureID(texture), width, height);
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// Reserve space from atlas for a texture.
|
||||
/// Pass width and height for CubeMap (use 2*width) & Texture2D (use width).
|
||||
/// </summary>
|
||||
/// <param name="textureA">Source texture A.</param>
|
||||
/// <param name="textureB">Source texture B.</param>
|
||||
/// <param name="width">Request width in pixels.</param>
|
||||
/// <param name="height">Request height in pixels.</param>
|
||||
/// <returns>True on success, false otherwise.</returns>
|
||||
public bool ReserveSpace(Texture textureA, Texture textureB, int width, int height)
|
||||
=> ReserveSpace(GetTextureID(textureA, textureB), width, height);
|
||||
|
||||
/// <summary>
|
||||
/// Reserve space from atlas for a texture.
|
||||
/// </summary>
|
||||
/// <param name="id">Source texture ID.</param>
|
||||
/// <param name="width">Request width in pixels.</param>
|
||||
/// <param name="height">Request height in pixels.</param>
|
||||
/// <returns>True on success, false otherwise.</returns>
|
||||
bool ReserveSpace(int id, int width, int height)
|
||||
{
|
||||
m_RequestedTextures[id] = new Vector2Int(width, height);
|
||||
|
||||
// Cookie texture resolution changing between frame is a special case, so we handle it here.
|
||||
// The texture will be re-allocated and may cause holes in the atlas texture, which is fine
|
||||
// because when it doesn't have any more space, it will re-layout the texture correctly.
|
||||
var cachedSize = GetCachedTextureSize(id);
|
||||
if (!IsCached(out _, id) || cachedSize.x != width || cachedSize.y != height)
|
||||
{
|
||||
Vector4 scaleBias = Vector4.zero;
|
||||
if (!AllocateTextureWithoutBlit(id, width, height, ref scaleBias))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// sort all the requested allocation from biggest to smallest and re-insert them.
|
||||
/// This function does not moves the textures in the atlas, it only changes their coordinates
|
||||
/// </summary>
|
||||
/// <returns>True if all textures have successfully been re-inserted in the atlas</returns>
|
||||
public bool RelayoutEntries()
|
||||
{
|
||||
var entries = new List<(int instanceId, Vector2Int size)>();
|
||||
|
||||
foreach (var entry in m_RequestedTextures)
|
||||
entries.Add((entry.Key, entry.Value));
|
||||
ResetAllocator();
|
||||
|
||||
// Sort entries from biggest to smallest
|
||||
entries.Sort((c1, c2) =>
|
||||
{
|
||||
return c2.size.magnitude.CompareTo(c1.size.magnitude);
|
||||
});
|
||||
|
||||
bool success = true;
|
||||
Vector4 newScaleOffset = Vector4.zero;
|
||||
foreach (var e in entries)
|
||||
success &= AllocateTextureWithoutBlit(e.instanceId, e.size.x, e.size.y, ref newScaleOffset);
|
||||
|
||||
return success;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get cache size in bytes.
|
||||
/// </summary>
|
||||
/// <param name="nbElement"></param>
|
||||
/// <param name="resolution">Atlas resolution (square).</param>
|
||||
/// <param name="hasMipmap">Atlas uses mip maps.</param>
|
||||
/// <param name="format">Atlas format.</param>
|
||||
/// <returns></returns>
|
||||
public static long GetApproxCacheSizeInByte(int nbElement, int resolution, bool hasMipmap, GraphicsFormat format)
|
||||
=> (long)(nbElement * resolution * resolution * (double)((hasMipmap ? k_MipmapFactorApprox : 1.0f) * GraphicsFormatUtility.GetBlockSize(format)));
|
||||
|
||||
/// <summary>
|
||||
/// Compute the max size of a power of two atlas for a given size in byte (weight).
|
||||
/// </summary>
|
||||
/// <param name="weight">Atlas size in bytes.</param>
|
||||
/// <param name="hasMipmap">Atlas uses mip maps.</param>
|
||||
/// <param name="format">Atlas format.</param>
|
||||
/// <returns></returns>
|
||||
public static int GetMaxCacheSizeForWeightInByte(int weight, bool hasMipmap, GraphicsFormat format)
|
||||
{
|
||||
float bytePerPixel = (float)GraphicsFormatUtility.GetBlockSize(format) * (hasMipmap ? k_MipmapFactorApprox : 1.0f);
|
||||
var maxAtlasSquareSize = Mathf.Sqrt((float)weight / bytePerPixel);
|
||||
return CoreUtils.PreviousPowerOfTwo((int)maxAtlasSquareSize);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
fileFormatVersion: 2
|
||||
guid: b265844b35f3cf14bb3e83aa57395937
|
||||
MonoImporter:
|
||||
externalObjects: {}
|
||||
serializedVersion: 2
|
||||
defaultReferences: []
|
||||
executionOrder: 0
|
||||
icon: {instanceID: 0}
|
||||
userData:
|
||||
assetBundleName:
|
||||
assetBundleVariant:
|
||||
|
|
@ -0,0 +1,261 @@
|
|||
using System.Collections.Generic;
|
||||
using UnityEngine.Rendering;
|
||||
|
||||
namespace UnityEngine.Rendering
|
||||
{
|
||||
/// <summary>
|
||||
/// A RTHandle is a RenderTexture that scales automatically with the camera size.
|
||||
/// This allows proper reutilization of RenderTexture memory when different cameras with various sizes are used during rendering.
|
||||
/// <seealso cref="RTHandleSystem"/>
|
||||
/// </summary>
|
||||
public class RTHandle
|
||||
{
|
||||
internal RTHandleSystem m_Owner;
|
||||
internal RenderTexture m_RT;
|
||||
internal Texture m_ExternalTexture;
|
||||
internal RenderTargetIdentifier m_NameID;
|
||||
internal bool m_EnableMSAA = false;
|
||||
internal bool m_EnableRandomWrite = false;
|
||||
internal bool m_EnableHWDynamicScale = false;
|
||||
internal string m_Name;
|
||||
|
||||
internal bool m_UseCustomHandleScales = false;
|
||||
internal RTHandleProperties m_CustomHandleProperties;
|
||||
|
||||
/// <summary>
|
||||
/// By default, rtHandleProperties gets the global state of scalers against the global reference mode.
|
||||
/// This method lets the current RTHandle use a local custom RTHandleProperties. This function is being used
|
||||
/// by scalers such as TAAU and DLSS, which require to have a different resolution for color (independent of the RTHandleSystem).
|
||||
/// </summary>
|
||||
/// <param name="properties">Properties to set.</param>
|
||||
public void SetCustomHandleProperties(in RTHandleProperties properties)
|
||||
{
|
||||
m_UseCustomHandleScales = true;
|
||||
m_CustomHandleProperties = properties;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Method that clears any custom handle property being set.
|
||||
/// </summary>
|
||||
public void ClearCustomHandleProperties()
|
||||
{
|
||||
m_UseCustomHandleScales = false;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Scale factor applied to the RTHandle reference size.
|
||||
/// </summary>
|
||||
public Vector2 scaleFactor { get; internal set; }
|
||||
internal ScaleFunc scaleFunc;
|
||||
|
||||
/// <summary>
|
||||
/// Returns true if the RTHandle uses automatic scaling.
|
||||
/// </summary>
|
||||
public bool useScaling { get; internal set; }
|
||||
/// <summary>
|
||||
/// Reference size of the RTHandle System associated with the RTHandle
|
||||
/// </summary>
|
||||
public Vector2Int referenceSize { get; internal set; }
|
||||
/// <summary>
|
||||
/// Current properties of the RTHandle System. If a custom property has been set through SetCustomHandleProperties method, it will be used that one instead.
|
||||
/// </summary>
|
||||
public RTHandleProperties rtHandleProperties { get { return m_UseCustomHandleScales ? m_CustomHandleProperties : m_Owner.rtHandleProperties; } }
|
||||
/// <summary>
|
||||
/// RenderTexture associated with the RTHandle
|
||||
/// </summary>
|
||||
public RenderTexture rt { get { return m_RT; } }
|
||||
/// <summary>
|
||||
/// RenderTargetIdentifier associated with the RTHandle
|
||||
/// </summary>
|
||||
public RenderTargetIdentifier nameID { get { return m_NameID; } }
|
||||
/// <summary>
|
||||
/// Name of the RTHandle
|
||||
/// </summary>
|
||||
public string name { get { return m_Name; } }
|
||||
|
||||
/// <summary>
|
||||
/// Returns true is MSAA is enabled, false otherwise.
|
||||
/// </summary>
|
||||
public bool isMSAAEnabled { get { return m_EnableMSAA; } }
|
||||
|
||||
// Keep constructor private
|
||||
internal RTHandle(RTHandleSystem owner)
|
||||
{
|
||||
m_Owner = owner;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Implicit conversion operator to RenderTargetIdentifier
|
||||
/// </summary>
|
||||
/// <param name="handle">Input RTHandle</param>
|
||||
/// <returns>RenderTargetIdentifier representation of the RTHandle.</returns>
|
||||
public static implicit operator RenderTargetIdentifier(RTHandle handle)
|
||||
{
|
||||
return handle != null ? handle.nameID : default(RenderTargetIdentifier);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Implicit conversion operator to Texture
|
||||
/// </summary>
|
||||
/// <param name="handle">Input RTHandle</param>
|
||||
/// <returns>Texture representation of the RTHandle.</returns>
|
||||
public static implicit operator Texture(RTHandle handle)
|
||||
{
|
||||
// If RTHandle is null then conversion should give a null Texture
|
||||
if (handle == null)
|
||||
return null;
|
||||
|
||||
Debug.Assert(handle.m_ExternalTexture != null || handle.rt != null);
|
||||
return (handle.rt != null) ? handle.rt : handle.m_ExternalTexture;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Implicit conversion operator to RenderTexture
|
||||
/// </summary>
|
||||
/// <param name="handle">Input RTHandle</param>
|
||||
/// <returns>RenderTexture representation of the RTHandle.</returns>
|
||||
public static implicit operator RenderTexture(RTHandle handle)
|
||||
{
|
||||
// If RTHandle is null then conversion should give a null RenderTexture
|
||||
if (handle == null)
|
||||
return null;
|
||||
|
||||
Debug.Assert(handle.rt != null, "RTHandle was created using a regular Texture and is used as a RenderTexture");
|
||||
return handle.rt;
|
||||
}
|
||||
|
||||
internal void SetRenderTexture(RenderTexture rt)
|
||||
{
|
||||
m_RT = rt;
|
||||
m_ExternalTexture = null;
|
||||
m_NameID = new RenderTargetIdentifier(rt);
|
||||
}
|
||||
|
||||
internal void SetTexture(Texture tex)
|
||||
{
|
||||
m_RT = null;
|
||||
m_ExternalTexture = tex;
|
||||
m_NameID = new RenderTargetIdentifier(tex);
|
||||
}
|
||||
|
||||
internal void SetTexture(RenderTargetIdentifier tex)
|
||||
{
|
||||
m_RT = null;
|
||||
m_ExternalTexture = null;
|
||||
m_NameID = tex;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get the Instance ID of the RTHandle.
|
||||
/// </summary>
|
||||
/// <returns>The RTHandle Instance ID.</returns>
|
||||
public int GetInstanceID()
|
||||
{
|
||||
if (m_RT != null)
|
||||
return m_RT.GetInstanceID();
|
||||
else if (m_ExternalTexture != null)
|
||||
return m_ExternalTexture.GetInstanceID();
|
||||
else
|
||||
return m_NameID.GetHashCode(); // No instance ID so we return the hash code.
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Release the RTHandle
|
||||
/// </summary>
|
||||
public void Release()
|
||||
{
|
||||
m_Owner.Remove(this);
|
||||
CoreUtils.Destroy(m_RT);
|
||||
m_NameID = BuiltinRenderTextureType.None;
|
||||
m_RT = null;
|
||||
m_ExternalTexture = null;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Return the input size, scaled by the RTHandle scale factor.
|
||||
/// </summary>
|
||||
/// <param name="refSize">Input size</param>
|
||||
/// <returns>Input size scaled by the RTHandle scale factor.</returns>
|
||||
public Vector2Int GetScaledSize(Vector2Int refSize)
|
||||
{
|
||||
if (!useScaling)
|
||||
return refSize;
|
||||
|
||||
if (scaleFunc != null)
|
||||
{
|
||||
return scaleFunc(refSize);
|
||||
}
|
||||
else
|
||||
{
|
||||
return new Vector2Int(
|
||||
x: Mathf.RoundToInt(scaleFactor.x * refSize.x),
|
||||
y: Mathf.RoundToInt(scaleFactor.y * refSize.y)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Return the scaled size of the RTHandle.
|
||||
/// </summary>
|
||||
/// <returns>The scaled size of the RTHandle.</returns>
|
||||
public Vector2Int GetScaledSize()
|
||||
{
|
||||
if (scaleFunc != null)
|
||||
{
|
||||
return scaleFunc(referenceSize);
|
||||
}
|
||||
else
|
||||
{
|
||||
return new Vector2Int(
|
||||
x: Mathf.RoundToInt(scaleFactor.x * referenceSize.x),
|
||||
y: Mathf.RoundToInt(scaleFactor.y * referenceSize.y)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#if UNITY_2020_2_OR_NEWER
|
||||
/// <summary>
|
||||
/// Switch the render target to fast memory on platform that have it.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Command buffer used for rendering.</param>
|
||||
/// <param name="residencyFraction">How much of the render target is to be switched into fast memory (between 0 and 1).</param>
|
||||
/// <param name="flags">Flag to determine what parts of the render target is spilled if not fully resident in fast memory.</param>
|
||||
/// <param name="copyContents">Whether the content of render target are copied or not when switching to fast memory.</param>
|
||||
|
||||
public void SwitchToFastMemory(CommandBuffer cmd,
|
||||
float residencyFraction = 1.0f,
|
||||
FastMemoryFlags flags = FastMemoryFlags.SpillTop,
|
||||
bool copyContents = false
|
||||
)
|
||||
{
|
||||
residencyFraction = Mathf.Clamp01(residencyFraction);
|
||||
cmd.SwitchIntoFastMemory(m_RT, flags, residencyFraction, copyContents);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Switch the render target to fast memory on platform that have it and copies the content.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Command buffer used for rendering.</param>
|
||||
/// <param name="residencyFraction">How much of the render target is to be switched into fast memory (between 0 and 1).</param>
|
||||
/// <param name="flags">Flag to determine what parts of the render target is spilled if not fully resident in fast memory.</param>
|
||||
public void CopyToFastMemory(CommandBuffer cmd,
|
||||
float residencyFraction = 1.0f,
|
||||
FastMemoryFlags flags = FastMemoryFlags.SpillTop
|
||||
)
|
||||
{
|
||||
SwitchToFastMemory(cmd, residencyFraction, flags, copyContents: true);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Switch out the render target from fast memory back to main memory on platforms that have fast memory.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Command buffer used for rendering.</param>
|
||||
/// <param name="copyContents">Whether the content of render target are copied or not when switching out fast memory.</param>
|
||||
public void SwitchOutFastMemory(CommandBuffer cmd, bool copyContents = true)
|
||||
{
|
||||
cmd.SwitchOutOfFastMemory(m_RT, copyContents);
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
fileFormatVersion: 2
|
||||
guid: f01477642fe8bcf46af0f654f65043cf
|
||||
MonoImporter:
|
||||
externalObjects: {}
|
||||
serializedVersion: 2
|
||||
defaultReferences: []
|
||||
executionOrder: 0
|
||||
icon: {instanceID: 0}
|
||||
userData:
|
||||
assetBundleName:
|
||||
assetBundleVariant:
|
||||
|
|
@ -0,0 +1,866 @@
|
|||
using System;
|
||||
using System.Collections.Generic;
|
||||
using UnityEngine.Assertions;
|
||||
using UnityEngine.Experimental.Rendering;
|
||||
|
||||
namespace UnityEngine.Rendering
|
||||
{
|
||||
/// <summary>
|
||||
/// Scaled function used to compute the size of a RTHandle for the current frame.
|
||||
/// </summary>
|
||||
/// <param name="size">Reference size of the RTHandle system for the frame.</param>
|
||||
/// <returns>The size of the RTHandled computed from the reference size.</returns>
|
||||
public delegate Vector2Int ScaleFunc(Vector2Int size);
|
||||
|
||||
/// <summary>
|
||||
/// List of properties of the RTHandle System for the current frame.
|
||||
/// </summary>
|
||||
public struct RTHandleProperties
|
||||
{
|
||||
/// <summary>
|
||||
/// Size set as reference at the previous frame
|
||||
/// </summary>
|
||||
public Vector2Int previousViewportSize;
|
||||
/// <summary>
|
||||
/// Size of the render targets at the previous frame
|
||||
/// </summary>
|
||||
public Vector2Int previousRenderTargetSize;
|
||||
/// <summary>
|
||||
/// Size set as reference at the current frame
|
||||
/// </summary>
|
||||
public Vector2Int currentViewportSize;
|
||||
/// <summary>
|
||||
/// Size of the render targets at the current frame
|
||||
/// </summary>
|
||||
public Vector2Int currentRenderTargetSize;
|
||||
/// <summary>
|
||||
/// Scale factor from RTHandleSystem max size to requested reference size (referenceSize/maxSize)
|
||||
/// (x,y) current frame (z,w) last frame (this is only used for buffered RTHandle Systems)
|
||||
/// </summary>
|
||||
public Vector4 rtHandleScale;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// System managing a set of RTHandle textures
|
||||
/// </summary>
|
||||
public partial class RTHandleSystem : IDisposable
|
||||
{
|
||||
internal enum ResizeMode
|
||||
{
|
||||
Auto,
|
||||
OnDemand
|
||||
}
|
||||
|
||||
// Parameters for auto-scaled Render Textures
|
||||
bool m_HardwareDynamicResRequested = false;
|
||||
HashSet<RTHandle> m_AutoSizedRTs;
|
||||
RTHandle[] m_AutoSizedRTsArray; // For fast iteration
|
||||
HashSet<RTHandle> m_ResizeOnDemandRTs;
|
||||
RTHandleProperties m_RTHandleProperties;
|
||||
|
||||
/// <summary>
|
||||
/// Current properties of the RTHandle System.
|
||||
/// </summary>
|
||||
public RTHandleProperties rtHandleProperties { get { return m_RTHandleProperties; } }
|
||||
|
||||
int m_MaxWidths = 0;
|
||||
int m_MaxHeights = 0;
|
||||
#if UNITY_EDITOR
|
||||
// In editor every now and then we must reset the size of the rthandle system if it was set very high and then switched back to a much smaller scale.
|
||||
int m_FramesSinceLastReset = 0;
|
||||
#endif
|
||||
|
||||
/// <summary>
|
||||
/// RTHandleSystem constructor.
|
||||
/// </summary>
|
||||
public RTHandleSystem()
|
||||
{
|
||||
m_AutoSizedRTs = new HashSet<RTHandle>();
|
||||
m_ResizeOnDemandRTs = new HashSet<RTHandle>();
|
||||
m_MaxWidths = 1;
|
||||
m_MaxHeights = 1;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Disposable pattern implementation
|
||||
/// </summary>
|
||||
public void Dispose()
|
||||
{
|
||||
Dispose(true);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Initialize the RTHandle system.
|
||||
/// </summary>
|
||||
/// <param name="width">Initial reference rendering width.</param>
|
||||
/// <param name="height">Initial reference rendering height.</param>
|
||||
public void Initialize(int width, int height)
|
||||
{
|
||||
if (m_AutoSizedRTs.Count != 0)
|
||||
{
|
||||
string leakingResources = "Unreleased RTHandles:";
|
||||
foreach (var rt in m_AutoSizedRTs)
|
||||
{
|
||||
leakingResources = string.Format("{0}\n {1}", leakingResources, rt.name);
|
||||
}
|
||||
Debug.LogError(string.Format("RTHandle.Initialize should only be called once before allocating any Render Texture. This may be caused by an unreleased RTHandle resource.\n{0}\n", leakingResources));
|
||||
}
|
||||
|
||||
m_MaxWidths = width;
|
||||
m_MaxHeights = height;
|
||||
|
||||
m_HardwareDynamicResRequested = DynamicResolutionHandler.instance.RequestsHardwareDynamicResolution();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Release memory of a RTHandle from the RTHandle System
|
||||
/// </summary>
|
||||
/// <param name="rth">RTHandle that should be released.</param>
|
||||
public void Release(RTHandle rth)
|
||||
{
|
||||
if (rth != null)
|
||||
{
|
||||
Assert.AreEqual(this, rth.m_Owner);
|
||||
rth.Release();
|
||||
}
|
||||
}
|
||||
|
||||
internal void Remove(RTHandle rth)
|
||||
{
|
||||
m_AutoSizedRTs.Remove(rth);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Reset the reference size of the system and reallocate all textures.
|
||||
/// </summary>
|
||||
/// <param name="width">New width.</param>
|
||||
/// <param name="height">New height.</param>
|
||||
public void ResetReferenceSize(int width, int height)
|
||||
{
|
||||
m_MaxWidths = width;
|
||||
m_MaxHeights = height;
|
||||
SetReferenceSize(width, height, reset: true);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Sets the reference rendering size for subsequent rendering for the RTHandle System
|
||||
/// </summary>
|
||||
/// <param name="width">Reference rendering width for subsequent rendering.</param>
|
||||
/// <param name="height">Reference rendering height for subsequent rendering.</param>
|
||||
public void SetReferenceSize(int width, int height)
|
||||
{
|
||||
SetReferenceSize(width, height, false);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Sets the reference rendering size for subsequent rendering for the RTHandle System
|
||||
/// </summary>
|
||||
/// <param name="width">Reference rendering width for subsequent rendering.</param>
|
||||
/// <param name="height">Reference rendering height for subsequent rendering.</param>
|
||||
/// <param name="reset">If set to true, the new width and height will override the old values even if they are not bigger.</param>
|
||||
public void SetReferenceSize(int width, int height, bool reset)
|
||||
{
|
||||
m_RTHandleProperties.previousViewportSize = m_RTHandleProperties.currentViewportSize;
|
||||
m_RTHandleProperties.previousRenderTargetSize = m_RTHandleProperties.currentRenderTargetSize;
|
||||
Vector2 lastFrameMaxSize = new Vector2(GetMaxWidth(), GetMaxHeight());
|
||||
|
||||
width = Mathf.Max(width, 1);
|
||||
height = Mathf.Max(height, 1);
|
||||
|
||||
#if UNITY_EDITOR
|
||||
// If the reference size is significantly higher than the current actualWidth/Height and it is larger than 1440p dimensions, we reset the reference size every several frames
|
||||
// in editor to avoid issues if a large resolution was temporarily set.
|
||||
const int resetInterval = 100;
|
||||
if (((m_MaxWidths / (float)width) > 2.0f && m_MaxWidths > 2560) ||
|
||||
((m_MaxHeights / (float)height) > 2.0f && m_MaxHeights > 1440))
|
||||
{
|
||||
if (m_FramesSinceLastReset > resetInterval)
|
||||
{
|
||||
m_FramesSinceLastReset = 0;
|
||||
ResetReferenceSize(width, height);
|
||||
}
|
||||
m_FramesSinceLastReset++;
|
||||
}
|
||||
else
|
||||
{
|
||||
// If some cameras is a reasonable resolution size, we dont reset.
|
||||
m_FramesSinceLastReset = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
bool sizeChanged = width > GetMaxWidth() || height > GetMaxHeight() || reset;
|
||||
if (sizeChanged)
|
||||
{
|
||||
Resize(width, height, sizeChanged);
|
||||
}
|
||||
|
||||
m_RTHandleProperties.currentViewportSize = new Vector2Int(width, height);
|
||||
m_RTHandleProperties.currentRenderTargetSize = new Vector2Int(GetMaxWidth(), GetMaxHeight());
|
||||
|
||||
// If the currentViewportSize is 0, it mean we are the first frame of rendering (can happen when doing domain reload for example or for reflection probe)
|
||||
// in this case the scalePrevious below could be invalided. But some effect rely on having a correct value like TAA with the history buffer for the first frame.
|
||||
// to work around this, when we detect that size is 0, we setup previous size to current size.
|
||||
if (m_RTHandleProperties.previousViewportSize.x == 0)
|
||||
{
|
||||
m_RTHandleProperties.previousViewportSize = m_RTHandleProperties.currentViewportSize;
|
||||
m_RTHandleProperties.previousRenderTargetSize = m_RTHandleProperties.currentRenderTargetSize;
|
||||
lastFrameMaxSize = new Vector2(GetMaxWidth(), GetMaxHeight());
|
||||
}
|
||||
|
||||
var scales = CalculateRatioAgainstMaxSize(m_RTHandleProperties.currentViewportSize);
|
||||
if (DynamicResolutionHandler.instance.HardwareDynamicResIsEnabled() && m_HardwareDynamicResRequested)
|
||||
{
|
||||
// Making the final scale in 'drs' space, since the final scale must account for rounding pixel values.
|
||||
m_RTHandleProperties.rtHandleScale = new Vector4(scales.x, scales.y, m_RTHandleProperties.rtHandleScale.x, m_RTHandleProperties.rtHandleScale.y);
|
||||
}
|
||||
else
|
||||
{
|
||||
Vector2 scalePrevious = m_RTHandleProperties.previousViewportSize / lastFrameMaxSize;
|
||||
m_RTHandleProperties.rtHandleScale = new Vector4(scales.x, scales.y, scalePrevious.x, scalePrevious.y);
|
||||
}
|
||||
}
|
||||
|
||||
internal Vector2 CalculateRatioAgainstMaxSize(in Vector2Int viewportSize)
|
||||
{
|
||||
Vector2 maxSize = new Vector2(GetMaxWidth(), GetMaxHeight());
|
||||
|
||||
if (DynamicResolutionHandler.instance.HardwareDynamicResIsEnabled() && m_HardwareDynamicResRequested && viewportSize != DynamicResolutionHandler.instance.finalViewport)
|
||||
{
|
||||
//for hardware resolution, the final goal is to figure out a scale from finalViewport into maxViewport.
|
||||
//This is however wrong! because the actualViewport might not fit the finalViewport perfectly, due to rounding.
|
||||
//A correct way is to instead downscale the maxViewport, and keep the final scale in terms of downsampled buffers.
|
||||
Vector2 currentScale = (Vector2)viewportSize / (Vector2)DynamicResolutionHandler.instance.finalViewport;
|
||||
maxSize = DynamicResolutionHandler.instance.ApplyScalesOnSize(new Vector2Int(GetMaxWidth(), GetMaxHeight()), currentScale);
|
||||
}
|
||||
|
||||
return new Vector2((float)viewportSize.x / maxSize.x, (float)viewportSize.y / maxSize.y);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Enable or disable hardware dynamic resolution for the RTHandle System
|
||||
/// </summary>
|
||||
/// <param name="enableHWDynamicRes">State of hardware dynamic resolution.</param>
|
||||
public void SetHardwareDynamicResolutionState(bool enableHWDynamicRes)
|
||||
{
|
||||
if (enableHWDynamicRes != m_HardwareDynamicResRequested)
|
||||
{
|
||||
m_HardwareDynamicResRequested = enableHWDynamicRes;
|
||||
|
||||
Array.Resize(ref m_AutoSizedRTsArray, m_AutoSizedRTs.Count);
|
||||
m_AutoSizedRTs.CopyTo(m_AutoSizedRTsArray);
|
||||
for (int i = 0, c = m_AutoSizedRTsArray.Length; i < c; ++i)
|
||||
{
|
||||
var rth = m_AutoSizedRTsArray[i];
|
||||
|
||||
// Grab the render texture
|
||||
var renderTexture = rth.m_RT;
|
||||
if (renderTexture)
|
||||
{
|
||||
// Free the previous version
|
||||
renderTexture.Release();
|
||||
|
||||
renderTexture.useDynamicScale = m_HardwareDynamicResRequested && rth.m_EnableHWDynamicScale;
|
||||
|
||||
// Create the render texture
|
||||
renderTexture.Create();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal void SwitchResizeMode(RTHandle rth, ResizeMode mode)
|
||||
{
|
||||
// Don't do anything is scaling isn't enabled on this RT
|
||||
// TODO: useScaling should probably be moved to ResizeMode.Fixed or something
|
||||
if (!rth.useScaling)
|
||||
return;
|
||||
|
||||
switch (mode)
|
||||
{
|
||||
case ResizeMode.OnDemand:
|
||||
m_AutoSizedRTs.Remove(rth);
|
||||
m_ResizeOnDemandRTs.Add(rth);
|
||||
break;
|
||||
case ResizeMode.Auto:
|
||||
// Resize now so it is consistent with other auto resize RTHs
|
||||
if (m_ResizeOnDemandRTs.Contains(rth))
|
||||
DemandResize(rth);
|
||||
m_ResizeOnDemandRTs.Remove(rth);
|
||||
m_AutoSizedRTs.Add(rth);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void DemandResize(RTHandle rth)
|
||||
{
|
||||
Assert.IsTrue(m_ResizeOnDemandRTs.Contains(rth), "The RTHandle is not an resize on demand handle in this RTHandleSystem. Please call SwitchToResizeOnDemand(rth, true) before resizing on demand.");
|
||||
|
||||
// Grab the render texture
|
||||
var rt = rth.m_RT;
|
||||
rth.referenceSize = new Vector2Int(m_MaxWidths, m_MaxHeights);
|
||||
var scaledSize = rth.GetScaledSize(rth.referenceSize);
|
||||
scaledSize = Vector2Int.Max(Vector2Int.one, scaledSize);
|
||||
|
||||
// Did the size change?
|
||||
var sizeChanged = rt.width != scaledSize.x || rt.height != scaledSize.y;
|
||||
|
||||
if (sizeChanged)
|
||||
{
|
||||
// Free this render texture
|
||||
rt.Release();
|
||||
|
||||
// Update the size
|
||||
rt.width = scaledSize.x;
|
||||
rt.height = scaledSize.y;
|
||||
|
||||
// Generate a new name
|
||||
rt.name = CoreUtils.GetRenderTargetAutoName(
|
||||
rt.width,
|
||||
rt.height,
|
||||
rt.volumeDepth,
|
||||
rt.graphicsFormat,
|
||||
rt.dimension,
|
||||
rth.m_Name,
|
||||
mips: rt.useMipMap,
|
||||
enableMSAA: rth.m_EnableMSAA,
|
||||
msaaSamples: (MSAASamples)rt.antiAliasing,
|
||||
dynamicRes: rt.useDynamicScale
|
||||
);
|
||||
|
||||
// Create the new texture
|
||||
rt.Create();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns the maximum allocated width of the RTHandle System.
|
||||
/// </summary>
|
||||
/// <returns>Maximum allocated width of the RTHandle System.</returns>
|
||||
public int GetMaxWidth() { return m_MaxWidths; }
|
||||
/// <summary>
|
||||
/// Returns the maximum allocated height of the RTHandle System.
|
||||
/// </summary>
|
||||
/// <returns>Maximum allocated height of the RTHandle System.</returns>
|
||||
public int GetMaxHeight() { return m_MaxHeights; }
|
||||
|
||||
void Dispose(bool disposing)
|
||||
{
|
||||
if (disposing)
|
||||
{
|
||||
Array.Resize(ref m_AutoSizedRTsArray, m_AutoSizedRTs.Count);
|
||||
m_AutoSizedRTs.CopyTo(m_AutoSizedRTsArray);
|
||||
for (int i = 0, c = m_AutoSizedRTsArray.Length; i < c; ++i)
|
||||
{
|
||||
var rt = m_AutoSizedRTsArray[i];
|
||||
Release(rt);
|
||||
}
|
||||
m_AutoSizedRTs.Clear();
|
||||
|
||||
Array.Resize(ref m_AutoSizedRTsArray, m_ResizeOnDemandRTs.Count);
|
||||
m_ResizeOnDemandRTs.CopyTo(m_AutoSizedRTsArray);
|
||||
for (int i = 0, c = m_AutoSizedRTsArray.Length; i < c; ++i)
|
||||
{
|
||||
var rt = m_AutoSizedRTsArray[i];
|
||||
Release(rt);
|
||||
}
|
||||
m_ResizeOnDemandRTs.Clear();
|
||||
m_AutoSizedRTsArray = null;
|
||||
}
|
||||
}
|
||||
|
||||
void Resize(int width, int height, bool sizeChanged)
|
||||
{
|
||||
m_MaxWidths = Math.Max(width, m_MaxWidths);
|
||||
m_MaxHeights = Math.Max(height, m_MaxHeights);
|
||||
|
||||
var maxSize = new Vector2Int(m_MaxWidths, m_MaxHeights);
|
||||
|
||||
Array.Resize(ref m_AutoSizedRTsArray, m_AutoSizedRTs.Count);
|
||||
m_AutoSizedRTs.CopyTo(m_AutoSizedRTsArray);
|
||||
|
||||
for (int i = 0, c = m_AutoSizedRTsArray.Length; i < c; ++i)
|
||||
{
|
||||
// Grab the RT Handle
|
||||
var rth = m_AutoSizedRTsArray[i];
|
||||
|
||||
// Force its new reference size
|
||||
rth.referenceSize = maxSize;
|
||||
|
||||
// Grab the render texture
|
||||
var renderTexture = rth.m_RT;
|
||||
|
||||
// Free the previous version
|
||||
renderTexture.Release();
|
||||
|
||||
// Get the scaled size
|
||||
var scaledSize = rth.GetScaledSize(maxSize);
|
||||
|
||||
renderTexture.width = Mathf.Max(scaledSize.x, 1);
|
||||
renderTexture.height = Mathf.Max(scaledSize.y, 1);
|
||||
|
||||
// Regenerate the name
|
||||
renderTexture.name = CoreUtils.GetRenderTargetAutoName(renderTexture.width, renderTexture.height, renderTexture.volumeDepth, renderTexture.graphicsFormat, renderTexture.dimension, rth.m_Name, mips: renderTexture.useMipMap, enableMSAA: rth.m_EnableMSAA, msaaSamples: (MSAASamples)renderTexture.antiAliasing, dynamicRes: renderTexture.useDynamicScale);
|
||||
|
||||
// Create the render texture
|
||||
renderTexture.Create();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a new fixed sized RTHandle.
|
||||
/// </summary>
|
||||
/// <param name="width">With of the RTHandle.</param>
|
||||
/// <param name="height">Heigh of the RTHandle.</param>
|
||||
/// <param name="slices">Number of slices of the RTHandle.</param>
|
||||
/// <param name="depthBufferBits">Bit depths of a depth buffer.</param>
|
||||
/// <param name="colorFormat">GraphicsFormat of a color buffer.</param>
|
||||
/// <param name="filterMode">Filtering mode of the RTHandle.</param>
|
||||
/// <param name="wrapMode">Addressing mode of the RTHandle.</param>
|
||||
/// <param name="dimension">Texture dimension of the RTHandle.</param>
|
||||
/// <param name="enableRandomWrite">Set to true to enable UAV random read writes on the texture.</param>
|
||||
/// <param name="useMipMap">Set to true if the texture should have mipmaps.</param>
|
||||
/// <param name="autoGenerateMips">Set to true to automatically generate mipmaps.</param>
|
||||
/// <param name="isShadowMap">Set to true if the depth buffer should be used as a shadow map.</param>
|
||||
/// <param name="anisoLevel">Anisotropic filtering level.</param>
|
||||
/// <param name="mipMapBias">Bias applied to mipmaps during filtering.</param>
|
||||
/// <param name="msaaSamples">Number of MSAA samples for the RTHandle.</param>
|
||||
/// <param name="bindTextureMS">Set to true if the texture needs to be bound as a multisampled texture in the shader.</param>
|
||||
/// <param name="useDynamicScale">Set to true to use hardware dynamic scaling.</param>
|
||||
/// <param name="memoryless">Use this property to set the render texture memoryless modes.</param>
|
||||
/// <param name="name">Name of the RTHandle.</param>
|
||||
/// <returns></returns>
|
||||
public RTHandle Alloc(
|
||||
int width,
|
||||
int height,
|
||||
int slices = 1,
|
||||
DepthBits depthBufferBits = DepthBits.None,
|
||||
GraphicsFormat colorFormat = GraphicsFormat.R8G8B8A8_SRGB,
|
||||
FilterMode filterMode = FilterMode.Point,
|
||||
TextureWrapMode wrapMode = TextureWrapMode.Repeat,
|
||||
TextureDimension dimension = TextureDimension.Tex2D,
|
||||
bool enableRandomWrite = false,
|
||||
bool useMipMap = false,
|
||||
bool autoGenerateMips = true,
|
||||
bool isShadowMap = false,
|
||||
int anisoLevel = 1,
|
||||
float mipMapBias = 0f,
|
||||
MSAASamples msaaSamples = MSAASamples.None,
|
||||
bool bindTextureMS = false,
|
||||
bool useDynamicScale = false,
|
||||
RenderTextureMemoryless memoryless = RenderTextureMemoryless.None,
|
||||
string name = ""
|
||||
)
|
||||
{
|
||||
bool enableMSAA = msaaSamples != MSAASamples.None;
|
||||
if (!enableMSAA && bindTextureMS == true)
|
||||
{
|
||||
Debug.LogWarning("RTHandle allocated without MSAA but with bindMS set to true, forcing bindMS to false.");
|
||||
bindTextureMS = false;
|
||||
}
|
||||
|
||||
// We need to handle this in an explicit way since GraphicsFormat does not expose depth formats. TODO: Get rid of this branch once GraphicsFormat'll expose depth related formats
|
||||
RenderTexture rt;
|
||||
if (isShadowMap || depthBufferBits != DepthBits.None)
|
||||
{
|
||||
RenderTextureFormat format = isShadowMap ? RenderTextureFormat.Shadowmap : RenderTextureFormat.Depth;
|
||||
rt = new RenderTexture(width, height, (int)depthBufferBits, format, RenderTextureReadWrite.Linear)
|
||||
{
|
||||
hideFlags = HideFlags.HideAndDontSave,
|
||||
volumeDepth = slices,
|
||||
filterMode = filterMode,
|
||||
wrapMode = wrapMode,
|
||||
dimension = dimension,
|
||||
enableRandomWrite = enableRandomWrite,
|
||||
useMipMap = useMipMap,
|
||||
autoGenerateMips = autoGenerateMips,
|
||||
anisoLevel = anisoLevel,
|
||||
mipMapBias = mipMapBias,
|
||||
antiAliasing = (int)msaaSamples,
|
||||
bindTextureMS = bindTextureMS,
|
||||
useDynamicScale = m_HardwareDynamicResRequested && useDynamicScale,
|
||||
memorylessMode = memoryless,
|
||||
name = CoreUtils.GetRenderTargetAutoName(width, height, slices, format, name, mips: useMipMap, enableMSAA: enableMSAA, msaaSamples: msaaSamples)
|
||||
};
|
||||
}
|
||||
else
|
||||
{
|
||||
rt = new RenderTexture(width, height, (int)depthBufferBits, colorFormat)
|
||||
{
|
||||
hideFlags = HideFlags.HideAndDontSave,
|
||||
volumeDepth = slices,
|
||||
filterMode = filterMode,
|
||||
wrapMode = wrapMode,
|
||||
dimension = dimension,
|
||||
enableRandomWrite = enableRandomWrite,
|
||||
useMipMap = useMipMap,
|
||||
autoGenerateMips = autoGenerateMips,
|
||||
anisoLevel = anisoLevel,
|
||||
mipMapBias = mipMapBias,
|
||||
antiAliasing = (int)msaaSamples,
|
||||
bindTextureMS = bindTextureMS,
|
||||
useDynamicScale = m_HardwareDynamicResRequested && useDynamicScale,
|
||||
memorylessMode = memoryless,
|
||||
name = CoreUtils.GetRenderTargetAutoName(width, height, slices, colorFormat, dimension, name, mips: useMipMap, enableMSAA: enableMSAA, msaaSamples: msaaSamples, dynamicRes: useDynamicScale)
|
||||
};
|
||||
}
|
||||
|
||||
rt.Create();
|
||||
|
||||
var newRT = new RTHandle(this);
|
||||
newRT.SetRenderTexture(rt);
|
||||
newRT.useScaling = false;
|
||||
newRT.m_EnableRandomWrite = enableRandomWrite;
|
||||
newRT.m_EnableMSAA = enableMSAA;
|
||||
newRT.m_EnableHWDynamicScale = useDynamicScale;
|
||||
newRT.m_Name = name;
|
||||
|
||||
newRT.referenceSize = new Vector2Int(width, height);
|
||||
|
||||
return newRT;
|
||||
}
|
||||
|
||||
// Next two methods are used to allocate RenderTexture that depend on the frame settings (resolution and msaa for now)
|
||||
// RenderTextures allocated this way are meant to be defined by a scale of camera resolution (full/half/quarter resolution for example).
|
||||
// The idea is that internally the system will scale up the size of all render texture so that it amortizes with time and not reallocate when a smaller size is required (which is what happens with TemporaryRTs).
|
||||
// Since MSAA cannot be changed on the fly for a given RenderTexture, a separate instance will be created if the user requires it. This instance will be the one used after the next call of SetReferenceSize if MSAA is required.
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a new automatically sized RTHandle.
|
||||
/// </summary>
|
||||
/// <param name="scaleFactor">Constant scale for the RTHandle size computation.</param>
|
||||
/// <param name="slices">Number of slices of the RTHandle.</param>
|
||||
/// <param name="depthBufferBits">Bit depths of a depth buffer.</param>
|
||||
/// <param name="colorFormat">GraphicsFormat of a color buffer.</param>
|
||||
/// <param name="filterMode">Filtering mode of the RTHandle.</param>
|
||||
/// <param name="wrapMode">Addressing mode of the RTHandle.</param>
|
||||
/// <param name="dimension">Texture dimension of the RTHandle.</param>
|
||||
/// <param name="enableRandomWrite">Set to true to enable UAV random read writes on the texture.</param>
|
||||
/// <param name="useMipMap">Set to true if the texture should have mipmaps.</param>
|
||||
/// <param name="autoGenerateMips">Set to true to automatically generate mipmaps.</param>
|
||||
/// <param name="isShadowMap">Set to true if the depth buffer should be used as a shadow map.</param>
|
||||
/// <param name="anisoLevel">Anisotropic filtering level.</param>
|
||||
/// <param name="mipMapBias">Bias applied to mipmaps during filtering.</param>
|
||||
/// <param name="msaaSamples">Number of MSAA samples.</param>
|
||||
/// <param name="bindTextureMS">Set to true if the texture needs to be bound as a multisampled texture in the shader.</param>
|
||||
/// <param name="useDynamicScale">Set to true to use hardware dynamic scaling.</param>
|
||||
/// <param name="memoryless">Use this property to set the render texture memoryless modes.</param>
|
||||
/// <param name="name">Name of the RTHandle.</param>
|
||||
/// <returns>A new RTHandle.</returns>
|
||||
public RTHandle Alloc(
|
||||
Vector2 scaleFactor,
|
||||
int slices = 1,
|
||||
DepthBits depthBufferBits = DepthBits.None,
|
||||
GraphicsFormat colorFormat = GraphicsFormat.R8G8B8A8_SRGB,
|
||||
FilterMode filterMode = FilterMode.Point,
|
||||
TextureWrapMode wrapMode = TextureWrapMode.Repeat,
|
||||
TextureDimension dimension = TextureDimension.Tex2D,
|
||||
bool enableRandomWrite = false,
|
||||
bool useMipMap = false,
|
||||
bool autoGenerateMips = true,
|
||||
bool isShadowMap = false,
|
||||
int anisoLevel = 1,
|
||||
float mipMapBias = 0f,
|
||||
MSAASamples msaaSamples = MSAASamples.None,
|
||||
bool bindTextureMS = false,
|
||||
bool useDynamicScale = false,
|
||||
RenderTextureMemoryless memoryless = RenderTextureMemoryless.None,
|
||||
string name = ""
|
||||
)
|
||||
{
|
||||
int width = Mathf.Max(Mathf.RoundToInt(scaleFactor.x * GetMaxWidth()), 1);
|
||||
int height = Mathf.Max(Mathf.RoundToInt(scaleFactor.y * GetMaxHeight()), 1);
|
||||
|
||||
var rth = AllocAutoSizedRenderTexture(width,
|
||||
height,
|
||||
slices,
|
||||
depthBufferBits,
|
||||
colorFormat,
|
||||
filterMode,
|
||||
wrapMode,
|
||||
dimension,
|
||||
enableRandomWrite,
|
||||
useMipMap,
|
||||
autoGenerateMips,
|
||||
isShadowMap,
|
||||
anisoLevel,
|
||||
mipMapBias,
|
||||
msaaSamples,
|
||||
bindTextureMS,
|
||||
useDynamicScale,
|
||||
memoryless,
|
||||
name
|
||||
);
|
||||
|
||||
rth.referenceSize = new Vector2Int(width, height);
|
||||
|
||||
rth.scaleFactor = scaleFactor;
|
||||
return rth;
|
||||
}
|
||||
|
||||
//
|
||||
// You can provide your own scaling function for advanced scaling schemes (e.g. scaling to
|
||||
// the next POT). The function takes a Vec2 as parameter that holds max width & height
|
||||
// values for the current manager context and returns a Vec2 of the final size in pixels.
|
||||
//
|
||||
// var rth = Alloc(
|
||||
// size => new Vector2Int(size.x / 2, size.y),
|
||||
// [...]
|
||||
// );
|
||||
//
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a new automatically sized RTHandle.
|
||||
/// </summary>
|
||||
/// <param name="scaleFunc">Function used for the RTHandle size computation.</param>
|
||||
/// <param name="slices">Number of slices of the RTHandle.</param>
|
||||
/// <param name="depthBufferBits">Bit depths of a depth buffer.</param>
|
||||
/// <param name="colorFormat">GraphicsFormat of a color buffer.</param>
|
||||
/// <param name="filterMode">Filtering mode of the RTHandle.</param>
|
||||
/// <param name="wrapMode">Addressing mode of the RTHandle.</param>
|
||||
/// <param name="dimension">Texture dimension of the RTHandle.</param>
|
||||
/// <param name="enableRandomWrite">Set to true to enable UAV random read writes on the texture.</param>
|
||||
/// <param name="useMipMap">Set to true if the texture should have mipmaps.</param>
|
||||
/// <param name="autoGenerateMips">Set to true to automatically generate mipmaps.</param>
|
||||
/// <param name="isShadowMap">Set to true if the depth buffer should be used as a shadow map.</param>
|
||||
/// <param name="anisoLevel">Anisotropic filtering level.</param>
|
||||
/// <param name="mipMapBias">Bias applied to mipmaps during filtering.</param>
|
||||
/// <param name="msaaSamples">Number of MSAA samples.</param>
|
||||
/// <param name="bindTextureMS">Set to true if the texture needs to be bound as a multisampled texture in the shader.</param>
|
||||
/// <param name="useDynamicScale">Set to true to use hardware dynamic scaling.</param>
|
||||
/// <param name="memoryless">Use this property to set the render texture memoryless modes.</param>
|
||||
/// <param name="name">Name of the RTHandle.</param>
|
||||
/// <returns>A new RTHandle.</returns>
|
||||
public RTHandle Alloc(
|
||||
ScaleFunc scaleFunc,
|
||||
int slices = 1,
|
||||
DepthBits depthBufferBits = DepthBits.None,
|
||||
GraphicsFormat colorFormat = GraphicsFormat.R8G8B8A8_SRGB,
|
||||
FilterMode filterMode = FilterMode.Point,
|
||||
TextureWrapMode wrapMode = TextureWrapMode.Repeat,
|
||||
TextureDimension dimension = TextureDimension.Tex2D,
|
||||
bool enableRandomWrite = false,
|
||||
bool useMipMap = false,
|
||||
bool autoGenerateMips = true,
|
||||
bool isShadowMap = false,
|
||||
int anisoLevel = 1,
|
||||
float mipMapBias = 0f,
|
||||
MSAASamples msaaSamples = MSAASamples.None,
|
||||
bool bindTextureMS = false,
|
||||
bool useDynamicScale = false,
|
||||
RenderTextureMemoryless memoryless = RenderTextureMemoryless.None,
|
||||
string name = ""
|
||||
)
|
||||
{
|
||||
var scaleFactor = scaleFunc(new Vector2Int(GetMaxWidth(), GetMaxHeight()));
|
||||
int width = Mathf.Max(scaleFactor.x, 1);
|
||||
int height = Mathf.Max(scaleFactor.y, 1);
|
||||
|
||||
var rth = AllocAutoSizedRenderTexture(width,
|
||||
height,
|
||||
slices,
|
||||
depthBufferBits,
|
||||
colorFormat,
|
||||
filterMode,
|
||||
wrapMode,
|
||||
dimension,
|
||||
enableRandomWrite,
|
||||
useMipMap,
|
||||
autoGenerateMips,
|
||||
isShadowMap,
|
||||
anisoLevel,
|
||||
mipMapBias,
|
||||
msaaSamples,
|
||||
bindTextureMS,
|
||||
useDynamicScale,
|
||||
memoryless,
|
||||
name
|
||||
);
|
||||
|
||||
rth.referenceSize = new Vector2Int(width, height);
|
||||
|
||||
rth.scaleFunc = scaleFunc;
|
||||
return rth;
|
||||
}
|
||||
|
||||
// Internal function
|
||||
RTHandle AllocAutoSizedRenderTexture(
|
||||
int width,
|
||||
int height,
|
||||
int slices,
|
||||
DepthBits depthBufferBits,
|
||||
GraphicsFormat colorFormat,
|
||||
FilterMode filterMode,
|
||||
TextureWrapMode wrapMode,
|
||||
TextureDimension dimension,
|
||||
bool enableRandomWrite,
|
||||
bool useMipMap,
|
||||
bool autoGenerateMips,
|
||||
bool isShadowMap,
|
||||
int anisoLevel,
|
||||
float mipMapBias,
|
||||
MSAASamples msaaSamples,
|
||||
bool bindTextureMS,
|
||||
bool useDynamicScale,
|
||||
RenderTextureMemoryless memoryless,
|
||||
string name
|
||||
)
|
||||
{
|
||||
bool enableMSAA = msaaSamples != MSAASamples.None;
|
||||
// Here user made a mistake in setting up msaa/bindMS, hence the warning
|
||||
if (!enableMSAA && bindTextureMS == true)
|
||||
{
|
||||
Debug.LogWarning("RTHandle allocated without MSAA but with bindMS set to true, forcing bindMS to false.");
|
||||
bindTextureMS = false;
|
||||
}
|
||||
|
||||
// MSAA Does not support random read/write.
|
||||
if (enableMSAA && (enableRandomWrite == true))
|
||||
{
|
||||
Debug.LogWarning("RTHandle that is MSAA-enabled cannot allocate MSAA RT with 'enableRandomWrite = true'.");
|
||||
enableRandomWrite = false;
|
||||
}
|
||||
|
||||
// We need to handle this in an explicit way since GraphicsFormat does not expose depth formats. TODO: Get rid of this branch once GraphicsFormat'll expose depth related formats
|
||||
RenderTexture rt;
|
||||
if (isShadowMap || depthBufferBits != DepthBits.None)
|
||||
{
|
||||
RenderTextureFormat format = isShadowMap ? RenderTextureFormat.Shadowmap : RenderTextureFormat.Depth;
|
||||
GraphicsFormat stencilFormat = isShadowMap ? GraphicsFormat.None : GraphicsFormat.R8_UInt;
|
||||
rt = new RenderTexture(width, height, (int)depthBufferBits, format, RenderTextureReadWrite.Linear)
|
||||
{
|
||||
hideFlags = HideFlags.HideAndDontSave,
|
||||
volumeDepth = slices,
|
||||
filterMode = filterMode,
|
||||
wrapMode = wrapMode,
|
||||
dimension = dimension,
|
||||
enableRandomWrite = enableRandomWrite,
|
||||
useMipMap = useMipMap,
|
||||
autoGenerateMips = autoGenerateMips,
|
||||
anisoLevel = anisoLevel,
|
||||
mipMapBias = mipMapBias,
|
||||
antiAliasing = (int)msaaSamples,
|
||||
bindTextureMS = bindTextureMS,
|
||||
useDynamicScale = m_HardwareDynamicResRequested && useDynamicScale,
|
||||
memorylessMode = memoryless,
|
||||
stencilFormat = stencilFormat,
|
||||
name = CoreUtils.GetRenderTargetAutoName(width, height, slices, colorFormat, dimension, name, mips: useMipMap, enableMSAA: enableMSAA, msaaSamples: msaaSamples, dynamicRes: useDynamicScale)
|
||||
};
|
||||
}
|
||||
else
|
||||
{
|
||||
rt = new RenderTexture(width, height, (int)depthBufferBits, colorFormat)
|
||||
{
|
||||
hideFlags = HideFlags.HideAndDontSave,
|
||||
volumeDepth = slices,
|
||||
filterMode = filterMode,
|
||||
wrapMode = wrapMode,
|
||||
dimension = dimension,
|
||||
enableRandomWrite = enableRandomWrite,
|
||||
useMipMap = useMipMap,
|
||||
autoGenerateMips = autoGenerateMips,
|
||||
anisoLevel = anisoLevel,
|
||||
mipMapBias = mipMapBias,
|
||||
antiAliasing = (int)msaaSamples,
|
||||
bindTextureMS = bindTextureMS,
|
||||
useDynamicScale = m_HardwareDynamicResRequested && useDynamicScale,
|
||||
memorylessMode = memoryless,
|
||||
name = CoreUtils.GetRenderTargetAutoName(width, height, slices, colorFormat, dimension, name, mips: useMipMap, enableMSAA: enableMSAA, msaaSamples: msaaSamples, dynamicRes: useDynamicScale)
|
||||
};
|
||||
}
|
||||
|
||||
rt.Create();
|
||||
|
||||
var rth = new RTHandle(this);
|
||||
rth.SetRenderTexture(rt);
|
||||
rth.m_EnableMSAA = enableMSAA;
|
||||
rth.m_EnableRandomWrite = enableRandomWrite;
|
||||
rth.useScaling = true;
|
||||
rth.m_EnableHWDynamicScale = useDynamicScale;
|
||||
rth.m_Name = name;
|
||||
m_AutoSizedRTs.Add(rth);
|
||||
return rth;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a RTHandle from a regular RenderTexture.
|
||||
/// </summary>
|
||||
/// <param name="texture">Input texture</param>
|
||||
/// <returns>A new RTHandle referencing the input texture.</returns>
|
||||
public RTHandle Alloc(RenderTexture texture)
|
||||
{
|
||||
var rth = new RTHandle(this);
|
||||
rth.SetRenderTexture(texture);
|
||||
rth.m_EnableMSAA = false;
|
||||
rth.m_EnableRandomWrite = false;
|
||||
rth.useScaling = false;
|
||||
rth.m_EnableHWDynamicScale = false;
|
||||
rth.m_Name = texture.name;
|
||||
return rth;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a RTHandle from a regular Texture.
|
||||
/// </summary>
|
||||
/// <param name="texture">Input texture</param>
|
||||
/// <returns>A new RTHandle referencing the input texture.</returns>
|
||||
public RTHandle Alloc(Texture texture)
|
||||
{
|
||||
var rth = new RTHandle(this);
|
||||
rth.SetTexture(texture);
|
||||
rth.m_EnableMSAA = false;
|
||||
rth.m_EnableRandomWrite = false;
|
||||
rth.useScaling = false;
|
||||
rth.m_EnableHWDynamicScale = false;
|
||||
rth.m_Name = texture.name;
|
||||
return rth;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a RTHandle from a regular render target identifier.
|
||||
/// </summary>
|
||||
/// <param name="texture">Input render target identifier.</param>
|
||||
/// <returns>A new RTHandle referencing the input render target identifier.</returns>
|
||||
public RTHandle Alloc(RenderTargetIdentifier texture)
|
||||
{
|
||||
return Alloc(texture, "");
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a RTHandle from a regular render target identifier.
|
||||
/// </summary>
|
||||
/// <param name="texture">Input render target identifier.</param>
|
||||
/// <param name="name">Name of the texture.</param>
|
||||
/// <returns>A new RTHandle referencing the input render target identifier.</returns>
|
||||
public RTHandle Alloc(RenderTargetIdentifier texture, string name)
|
||||
{
|
||||
var rth = new RTHandle(this);
|
||||
rth.SetTexture(texture);
|
||||
rth.m_EnableMSAA = false;
|
||||
rth.m_EnableRandomWrite = false;
|
||||
rth.useScaling = false;
|
||||
rth.m_EnableHWDynamicScale = false;
|
||||
rth.m_Name = name;
|
||||
return rth;
|
||||
}
|
||||
|
||||
private static RTHandle Alloc(RTHandle tex)
|
||||
{
|
||||
Debug.LogError("Allocation a RTHandle from another one is forbidden.");
|
||||
return null;
|
||||
}
|
||||
|
||||
internal string DumpRTInfo()
|
||||
{
|
||||
string result = "";
|
||||
Array.Resize(ref m_AutoSizedRTsArray, m_AutoSizedRTs.Count);
|
||||
m_AutoSizedRTs.CopyTo(m_AutoSizedRTsArray);
|
||||
for (int i = 0, c = m_AutoSizedRTsArray.Length; i < c; ++i)
|
||||
{
|
||||
var rt = m_AutoSizedRTsArray[i].rt;
|
||||
result = string.Format("{0}\nRT ({1})\t Format: {2} W: {3} H {4}\n", result, i, rt.format, rt.width, rt.height);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
fileFormatVersion: 2
|
||||
guid: ee2d997a8a7c5de408c0a4194b1a8b4d
|
||||
MonoImporter:
|
||||
externalObjects: {}
|
||||
serializedVersion: 2
|
||||
defaultReferences: []
|
||||
executionOrder: 0
|
||||
icon: {instanceID: 0}
|
||||
userData:
|
||||
assetBundleName:
|
||||
assetBundleVariant:
|
||||
|
|
@ -0,0 +1,329 @@
|
|||
using UnityEngine.Experimental.Rendering;
|
||||
|
||||
namespace UnityEngine.Rendering
|
||||
{
|
||||
/// <summary>
|
||||
/// Default instance of a RTHandleSystem
|
||||
/// </summary>
|
||||
public static class RTHandles
|
||||
{
|
||||
static RTHandleSystem s_DefaultInstance = new RTHandleSystem();
|
||||
|
||||
/// <summary>
|
||||
/// Maximum allocated width of the default RTHandle System
|
||||
/// </summary>
|
||||
public static int maxWidth { get { return s_DefaultInstance.GetMaxWidth(); } }
|
||||
/// <summary>
|
||||
/// Maximum allocated height of the default RTHandle System
|
||||
/// </summary>
|
||||
public static int maxHeight { get { return s_DefaultInstance.GetMaxHeight(); } }
|
||||
/// <summary>
|
||||
/// Current properties of the default RTHandle System
|
||||
/// </summary>
|
||||
public static RTHandleProperties rtHandleProperties { get { return s_DefaultInstance.rtHandleProperties; } }
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a new fixed sized RTHandle with the default RTHandle System.
|
||||
/// </summary>
|
||||
/// <param name="width">With of the RTHandle.</param>
|
||||
/// <param name="height">Heigh of the RTHandle.</param>
|
||||
/// <param name="slices">Number of slices of the RTHandle.</param>
|
||||
/// <param name="depthBufferBits">Bit depths of a depth buffer.</param>
|
||||
/// <param name="colorFormat">GraphicsFormat of a color buffer.</param>
|
||||
/// <param name="filterMode">Filtering mode of the RTHandle.</param>
|
||||
/// <param name="wrapMode">Addressing mode of the RTHandle.</param>
|
||||
/// <param name="dimension">Texture dimension of the RTHandle.</param>
|
||||
/// <param name="enableRandomWrite">Set to true to enable UAV random read writes on the texture.</param>
|
||||
/// <param name="useMipMap">Set to true if the texture should have mipmaps.</param>
|
||||
/// <param name="autoGenerateMips">Set to true to automatically generate mipmaps.</param>
|
||||
/// <param name="isShadowMap">Set to true if the depth buffer should be used as a shadow map.</param>
|
||||
/// <param name="anisoLevel">Anisotropic filtering level.</param>
|
||||
/// <param name="mipMapBias">Bias applied to mipmaps during filtering.</param>
|
||||
/// <param name="msaaSamples">Number of MSAA samples for the RTHandle.</param>
|
||||
/// <param name="bindTextureMS">Set to true if the texture needs to be bound as a multisampled texture in the shader.</param>
|
||||
/// <param name="useDynamicScale">Set to true to use hardware dynamic scaling.</param>
|
||||
/// <param name="memoryless">Use this property to set the render texture memoryless modes.</param>
|
||||
/// <param name="name">Name of the RTHandle.</param>
|
||||
/// <returns></returns>
|
||||
public static RTHandle Alloc(
|
||||
int width,
|
||||
int height,
|
||||
int slices = 1,
|
||||
DepthBits depthBufferBits = DepthBits.None,
|
||||
GraphicsFormat colorFormat = GraphicsFormat.R8G8B8A8_SRGB,
|
||||
FilterMode filterMode = FilterMode.Point,
|
||||
TextureWrapMode wrapMode = TextureWrapMode.Repeat,
|
||||
TextureDimension dimension = TextureDimension.Tex2D,
|
||||
bool enableRandomWrite = false,
|
||||
bool useMipMap = false,
|
||||
bool autoGenerateMips = true,
|
||||
bool isShadowMap = false,
|
||||
int anisoLevel = 1,
|
||||
float mipMapBias = 0,
|
||||
MSAASamples msaaSamples = MSAASamples.None,
|
||||
bool bindTextureMS = false,
|
||||
bool useDynamicScale = false,
|
||||
RenderTextureMemoryless memoryless = RenderTextureMemoryless.None,
|
||||
string name = ""
|
||||
)
|
||||
{
|
||||
return s_DefaultInstance.Alloc(
|
||||
width,
|
||||
height,
|
||||
slices,
|
||||
depthBufferBits,
|
||||
colorFormat,
|
||||
filterMode,
|
||||
wrapMode,
|
||||
dimension,
|
||||
enableRandomWrite,
|
||||
useMipMap,
|
||||
autoGenerateMips,
|
||||
isShadowMap,
|
||||
anisoLevel,
|
||||
mipMapBias,
|
||||
msaaSamples,
|
||||
bindTextureMS,
|
||||
useDynamicScale,
|
||||
memoryless,
|
||||
name
|
||||
);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a new automatically sized RTHandle for the default RTHandle System.
|
||||
/// </summary>
|
||||
/// <param name="scaleFactor">Constant scale for the RTHandle size computation.</param>
|
||||
/// <param name="slices">Number of slices of the RTHandle.</param>
|
||||
/// <param name="depthBufferBits">Bit depths of a depth buffer.</param>
|
||||
/// <param name="colorFormat">GraphicsFormat of a color buffer.</param>
|
||||
/// <param name="filterMode">Filtering mode of the RTHandle.</param>
|
||||
/// <param name="wrapMode">Addressing mode of the RTHandle.</param>
|
||||
/// <param name="dimension">Texture dimension of the RTHandle.</param>
|
||||
/// <param name="enableRandomWrite">Set to true to enable UAV random read writes on the texture.</param>
|
||||
/// <param name="useMipMap">Set to true if the texture should have mipmaps.</param>
|
||||
/// <param name="autoGenerateMips">Set to true to automatically generate mipmaps.</param>
|
||||
/// <param name="isShadowMap">Set to true if the depth buffer should be used as a shadow map.</param>
|
||||
/// <param name="anisoLevel">Anisotropic filtering level.</param>
|
||||
/// <param name="mipMapBias">Bias applied to mipmaps during filtering.</param>
|
||||
/// <param name="msaaSamples">Number of MSAA samples.</param>
|
||||
/// <param name="bindTextureMS">Set to true if the texture needs to be bound as a multisampled texture in the shader.</param>
|
||||
/// <param name="useDynamicScale">Set to true to use hardware dynamic scaling.</param>
|
||||
/// <param name="memoryless">Use this property to set the render texture memoryless modes.</param>
|
||||
/// <param name="name">Name of the RTHandle.</param>
|
||||
/// <returns>A new RTHandle.</returns>
|
||||
public static RTHandle Alloc(
|
||||
Vector2 scaleFactor,
|
||||
int slices = 1,
|
||||
DepthBits depthBufferBits = DepthBits.None,
|
||||
GraphicsFormat colorFormat = GraphicsFormat.R8G8B8A8_SRGB,
|
||||
FilterMode filterMode = FilterMode.Point,
|
||||
TextureWrapMode wrapMode = TextureWrapMode.Repeat,
|
||||
TextureDimension dimension = TextureDimension.Tex2D,
|
||||
bool enableRandomWrite = false,
|
||||
bool useMipMap = false,
|
||||
bool autoGenerateMips = true,
|
||||
bool isShadowMap = false,
|
||||
int anisoLevel = 1,
|
||||
float mipMapBias = 0,
|
||||
MSAASamples msaaSamples = MSAASamples.None,
|
||||
bool bindTextureMS = false,
|
||||
bool useDynamicScale = false,
|
||||
RenderTextureMemoryless memoryless = RenderTextureMemoryless.None,
|
||||
string name = ""
|
||||
)
|
||||
{
|
||||
return s_DefaultInstance.Alloc(
|
||||
scaleFactor,
|
||||
slices,
|
||||
depthBufferBits,
|
||||
colorFormat,
|
||||
filterMode,
|
||||
wrapMode,
|
||||
dimension,
|
||||
enableRandomWrite,
|
||||
useMipMap,
|
||||
autoGenerateMips,
|
||||
isShadowMap,
|
||||
anisoLevel,
|
||||
mipMapBias,
|
||||
msaaSamples,
|
||||
bindTextureMS,
|
||||
useDynamicScale,
|
||||
memoryless,
|
||||
name
|
||||
);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a new automatically sized RTHandle for the default RTHandle System.
|
||||
/// </summary>
|
||||
/// <param name="scaleFunc">Function used for the RTHandle size computation.</param>
|
||||
/// <param name="slices">Number of slices of the RTHandle.</param>
|
||||
/// <param name="depthBufferBits">Bit depths of a depth buffer.</param>
|
||||
/// <param name="colorFormat">GraphicsFormat of a color buffer.</param>
|
||||
/// <param name="filterMode">Filtering mode of the RTHandle.</param>
|
||||
/// <param name="wrapMode">Addressing mode of the RTHandle.</param>
|
||||
/// <param name="dimension">Texture dimension of the RTHandle.</param>
|
||||
/// <param name="enableRandomWrite">Set to true to enable UAV random read writes on the texture.</param>
|
||||
/// <param name="useMipMap">Set to true if the texture should have mipmaps.</param>
|
||||
/// <param name="autoGenerateMips">Set to true to automatically generate mipmaps.</param>
|
||||
/// <param name="isShadowMap">Set to true if the depth buffer should be used as a shadow map.</param>
|
||||
/// <param name="anisoLevel">Anisotropic filtering level.</param>
|
||||
/// <param name="mipMapBias">Bias applied to mipmaps during filtering.</param>
|
||||
/// <param name="msaaSamples">Number of MSAA samples.</param>
|
||||
/// <param name="bindTextureMS">Set to true if the texture needs to be bound as a multisampled texture in the shader.</param>
|
||||
/// <param name="useDynamicScale">Set to true to use hardware dynamic scaling.</param>
|
||||
/// <param name="memoryless">Use this property to set the render texture memoryless modes.</param>
|
||||
/// <param name="name">Name of the RTHandle.</param>
|
||||
/// <returns></returns>
|
||||
public static RTHandle Alloc(
|
||||
ScaleFunc scaleFunc,
|
||||
int slices = 1,
|
||||
DepthBits depthBufferBits = DepthBits.None,
|
||||
GraphicsFormat colorFormat = GraphicsFormat.R8G8B8A8_SRGB,
|
||||
FilterMode filterMode = FilterMode.Point,
|
||||
TextureWrapMode wrapMode = TextureWrapMode.Repeat,
|
||||
TextureDimension dimension = TextureDimension.Tex2D,
|
||||
bool enableRandomWrite = false,
|
||||
bool useMipMap = false,
|
||||
bool autoGenerateMips = true,
|
||||
bool isShadowMap = false,
|
||||
int anisoLevel = 1,
|
||||
float mipMapBias = 0,
|
||||
MSAASamples msaaSamples = MSAASamples.None,
|
||||
bool bindTextureMS = false,
|
||||
bool useDynamicScale = false,
|
||||
RenderTextureMemoryless memoryless = RenderTextureMemoryless.None,
|
||||
string name = ""
|
||||
)
|
||||
{
|
||||
return s_DefaultInstance.Alloc(
|
||||
scaleFunc,
|
||||
slices,
|
||||
depthBufferBits,
|
||||
colorFormat,
|
||||
filterMode,
|
||||
wrapMode,
|
||||
dimension,
|
||||
enableRandomWrite,
|
||||
useMipMap,
|
||||
autoGenerateMips,
|
||||
isShadowMap,
|
||||
anisoLevel,
|
||||
mipMapBias,
|
||||
msaaSamples,
|
||||
bindTextureMS,
|
||||
useDynamicScale,
|
||||
memoryless,
|
||||
name
|
||||
);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a RTHandle from a regular Texture for the default RTHandle system.
|
||||
/// </summary>
|
||||
/// <param name="tex">Input texture</param>
|
||||
/// <returns>A new RTHandle referencing the input texture.</returns>
|
||||
public static RTHandle Alloc(Texture tex)
|
||||
{
|
||||
return s_DefaultInstance.Alloc(tex);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a RTHandle from a regular RenderTexture for the default RTHandle system.
|
||||
/// </summary>
|
||||
/// <param name="tex">Input texture</param>
|
||||
/// <returns>A new RTHandle referencing the input texture.</returns>
|
||||
public static RTHandle Alloc(RenderTexture tex)
|
||||
{
|
||||
return s_DefaultInstance.Alloc(tex);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a RTHandle from a regular render target identifier for the default RTHandle system.
|
||||
/// </summary>
|
||||
/// <param name="tex">Input render target identifier.</param>
|
||||
/// <returns>A new RTHandle referencing the input render target identifier.</returns>
|
||||
public static RTHandle Alloc(RenderTargetIdentifier tex)
|
||||
{
|
||||
return s_DefaultInstance.Alloc(tex);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate a RTHandle from a regular render target identifier for the default RTHandle system.
|
||||
/// </summary>
|
||||
/// <param name="tex">Input render target identifier.</param>
|
||||
/// <param name="name">Name of the render target.</param>
|
||||
/// <returns>A new RTHandle referencing the input render target identifier.</returns>
|
||||
public static RTHandle Alloc(RenderTargetIdentifier tex, string name)
|
||||
{
|
||||
return s_DefaultInstance.Alloc(tex, name);
|
||||
}
|
||||
|
||||
private static RTHandle Alloc(RTHandle tex)
|
||||
{
|
||||
Debug.LogError("Allocation a RTHandle from another one is forbidden.");
|
||||
return null;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Initialize the default RTHandle system.
|
||||
/// </summary>
|
||||
/// <param name="width">Initial reference rendering width.</param>
|
||||
/// <param name="height">Initial reference rendering height.</param>
|
||||
public static void Initialize(int width, int height)
|
||||
{
|
||||
s_DefaultInstance.Initialize(width, height);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Release memory of a RTHandle from the default RTHandle System
|
||||
/// </summary>
|
||||
/// <param name="rth">RTHandle that should be released.</param>
|
||||
public static void Release(RTHandle rth)
|
||||
{
|
||||
s_DefaultInstance.Release(rth);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Enable or disable hardware dynamic resolution for the default RTHandle System
|
||||
/// </summary>
|
||||
/// <param name="hwDynamicResRequested">State of hardware dynamic resolution.</param>
|
||||
public static void SetHardwareDynamicResolutionState(bool hwDynamicResRequested)
|
||||
{
|
||||
s_DefaultInstance.SetHardwareDynamicResolutionState(hwDynamicResRequested);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Sets the reference rendering size for subsequent rendering for the default RTHandle System
|
||||
/// </summary>
|
||||
/// <param name="width">Reference rendering width for subsequent rendering.</param>
|
||||
/// <param name="height">Reference rendering height for subsequent rendering.</param>
|
||||
public static void SetReferenceSize(int width, int height)
|
||||
{
|
||||
s_DefaultInstance.SetReferenceSize(width, height);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Reset the reference size of the system and reallocate all textures.
|
||||
/// </summary>
|
||||
/// <param name="width">New width.</param>
|
||||
/// <param name="height">New height.</param>
|
||||
public static void ResetReferenceSize(int width, int height)
|
||||
{
|
||||
s_DefaultInstance.ResetReferenceSize(width, height);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns the ratio against the current target's max resolution
|
||||
/// </summary>
|
||||
/// <param name="width">width to utilize</param>
|
||||
/// <param name="height">height to utilize</param>
|
||||
/// <returns> retruns the width,height / maxTargetSize.xy ratio. </returns>
|
||||
public static Vector2 CalculateRatioAgainstMaxSize(int width, int height)
|
||||
{
|
||||
return s_DefaultInstance.CalculateRatioAgainstMaxSize(new Vector2Int(width, height));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
fileFormatVersion: 2
|
||||
guid: 4eb3ce06cfe568d41b5658c020b72c8e
|
||||
MonoImporter:
|
||||
externalObjects: {}
|
||||
serializedVersion: 2
|
||||
defaultReferences: []
|
||||
executionOrder: 0
|
||||
icon: {instanceID: 0}
|
||||
userData:
|
||||
assetBundleName:
|
||||
assetBundleVariant:
|
||||
|
|
@ -0,0 +1,772 @@
|
|||
using System.Collections.Generic;
|
||||
using UnityEngine.Experimental.Rendering;
|
||||
using System;
|
||||
|
||||
namespace UnityEngine.Rendering
|
||||
{
|
||||
class AtlasAllocator
|
||||
{
|
||||
private class AtlasNode
|
||||
{
|
||||
public AtlasNode m_RightChild = null;
|
||||
public AtlasNode m_BottomChild = null;
|
||||
public Vector4 m_Rect = new Vector4(0, 0, 0, 0); // x,y is width and height (scale) z,w offset into atlas (offset)
|
||||
|
||||
public AtlasNode Allocate(ref ObjectPool<AtlasNode> pool, int width, int height, bool powerOfTwoPadding)
|
||||
{
|
||||
// not a leaf node, try children
|
||||
if (m_RightChild != null)
|
||||
{
|
||||
AtlasNode node = m_RightChild.Allocate(ref pool, width, height, powerOfTwoPadding);
|
||||
if (node == null)
|
||||
{
|
||||
node = m_BottomChild.Allocate(ref pool, width, height, powerOfTwoPadding);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
int wPadd = 0;
|
||||
int hPadd = 0;
|
||||
|
||||
if (powerOfTwoPadding)
|
||||
{
|
||||
wPadd = (int)m_Rect.x % width;
|
||||
hPadd = (int)m_Rect.y % height;
|
||||
}
|
||||
|
||||
//leaf node, check for fit
|
||||
if ((width <= m_Rect.x - wPadd) && (height <= m_Rect.y - hPadd))
|
||||
{
|
||||
// perform the split
|
||||
m_RightChild = pool.Get();
|
||||
m_BottomChild = pool.Get();
|
||||
|
||||
m_Rect.z += wPadd;
|
||||
m_Rect.w += hPadd;
|
||||
m_Rect.x -= wPadd;
|
||||
m_Rect.y -= hPadd;
|
||||
|
||||
if (width > height) // logic to decide which way to split
|
||||
{
|
||||
// +--------+------+
|
||||
m_RightChild.m_Rect.z = m_Rect.z + width; // | | |
|
||||
m_RightChild.m_Rect.w = m_Rect.w; // +--------+------+
|
||||
m_RightChild.m_Rect.x = m_Rect.x - width; // | |
|
||||
m_RightChild.m_Rect.y = height; // | |
|
||||
// +---------------+
|
||||
m_BottomChild.m_Rect.z = m_Rect.z;
|
||||
m_BottomChild.m_Rect.w = m_Rect.w + height;
|
||||
m_BottomChild.m_Rect.x = m_Rect.x;
|
||||
m_BottomChild.m_Rect.y = m_Rect.y - height;
|
||||
}
|
||||
else
|
||||
{ // +---+-----------+
|
||||
m_RightChild.m_Rect.z = m_Rect.z + width; // | | |
|
||||
m_RightChild.m_Rect.w = m_Rect.w; // | | |
|
||||
m_RightChild.m_Rect.x = m_Rect.x - width; // +---+ +
|
||||
m_RightChild.m_Rect.y = m_Rect.y; // | | |
|
||||
// +---+-----------+
|
||||
m_BottomChild.m_Rect.z = m_Rect.z;
|
||||
m_BottomChild.m_Rect.w = m_Rect.w + height;
|
||||
m_BottomChild.m_Rect.x = width;
|
||||
m_BottomChild.m_Rect.y = m_Rect.y - height;
|
||||
}
|
||||
m_Rect.x = width;
|
||||
m_Rect.y = height;
|
||||
return this;
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
public void Release(ref ObjectPool<AtlasNode> pool)
|
||||
{
|
||||
if (m_RightChild != null)
|
||||
{
|
||||
m_RightChild.Release(ref pool);
|
||||
m_BottomChild.Release(ref pool);
|
||||
pool.Release(m_RightChild);
|
||||
pool.Release(m_BottomChild);
|
||||
}
|
||||
|
||||
m_RightChild = null;
|
||||
m_BottomChild = null;
|
||||
m_Rect = Vector4.zero;
|
||||
}
|
||||
}
|
||||
|
||||
private AtlasNode m_Root;
|
||||
private int m_Width;
|
||||
private int m_Height;
|
||||
private bool powerOfTwoPadding;
|
||||
private ObjectPool<AtlasNode> m_NodePool;
|
||||
|
||||
public AtlasAllocator(int width, int height, bool potPadding)
|
||||
{
|
||||
m_Root = new AtlasNode();
|
||||
m_Root.m_Rect.Set(width, height, 0, 0);
|
||||
m_Width = width;
|
||||
m_Height = height;
|
||||
powerOfTwoPadding = potPadding;
|
||||
m_NodePool = new ObjectPool<AtlasNode>(_ => { }, _ => { });
|
||||
}
|
||||
|
||||
public bool Allocate(ref Vector4 result, int width, int height)
|
||||
{
|
||||
AtlasNode node = m_Root.Allocate(ref m_NodePool, width, height, powerOfTwoPadding);
|
||||
if (node != null)
|
||||
{
|
||||
result = node.m_Rect;
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
result = Vector4.zero;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
public void Reset()
|
||||
{
|
||||
m_Root.Release(ref m_NodePool);
|
||||
m_Root.m_Rect.Set(m_Width, m_Height, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// A generic Atlas texture of 2D textures.
|
||||
/// An atlas texture is a texture collection that collects multiple sub-textures into a single big texture.
|
||||
/// Sub-texture allocation for Texture2DAtlas is static and will not change after initial allocation.
|
||||
/// Does not add mipmap padding for sub-textures.
|
||||
/// </summary>
|
||||
public class Texture2DAtlas
|
||||
{
|
||||
private enum BlitType
|
||||
{
|
||||
Default,
|
||||
CubeTo2DOctahedral,
|
||||
SingleChannel,
|
||||
CubeTo2DOctahedralSingleChannel,
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Texture is not on the GPU or is not up to date.
|
||||
/// </summary>
|
||||
private protected const int kGPUTexInvalid = 0;
|
||||
/// <summary>
|
||||
/// Texture Mip0 is on the GPU and up to date.
|
||||
/// </summary>
|
||||
private protected const int kGPUTexValidMip0 = 1;
|
||||
/// <summary>
|
||||
/// Texture and all mips are on the GPU and up to date.
|
||||
/// </summary>
|
||||
private protected const int kGPUTexValidMipAll = 2;
|
||||
|
||||
/// <summary>
|
||||
/// The texture for the atlas.
|
||||
/// </summary>
|
||||
private protected RTHandle m_AtlasTexture = null;
|
||||
/// <summary>
|
||||
/// Width of the atlas.
|
||||
/// </summary>
|
||||
private protected int m_Width;
|
||||
/// <summary>
|
||||
/// Height of the atlas.
|
||||
/// </summary>
|
||||
private protected int m_Height;
|
||||
/// <summary>
|
||||
/// Format of the atlas.
|
||||
/// </summary>
|
||||
private protected GraphicsFormat m_Format;
|
||||
/// <summary>
|
||||
/// Atlas uses mip maps.
|
||||
/// </summary>
|
||||
private protected bool m_UseMipMaps;
|
||||
bool m_IsAtlasTextureOwner = false;
|
||||
private AtlasAllocator m_AtlasAllocator = null;
|
||||
private Dictionary<int, (Vector4 scaleOffset, Vector2Int size)> m_AllocationCache = new Dictionary<int, (Vector4, Vector2Int)>();
|
||||
private Dictionary<int, int> m_IsGPUTextureUpToDate = new Dictionary<int, int>();
|
||||
private Dictionary<int, int> m_TextureHashes = new Dictionary<int, int>();
|
||||
|
||||
static readonly Vector4 fullScaleOffset = new Vector4(1, 1, 0, 0);
|
||||
|
||||
// Maximum mip padding that can be applied to the textures in the atlas (1 << 10 = 1024 pixels)
|
||||
static readonly int s_MaxMipLevelPadding = 10;
|
||||
|
||||
/// <summary>
|
||||
/// Maximum mip padding (pow2) that can be applied to the textures in the atlas
|
||||
/// </summary>
|
||||
public static int maxMipLevelPadding => s_MaxMipLevelPadding;
|
||||
|
||||
/// <summary>
|
||||
/// Handle to the texture of the atlas.
|
||||
/// </summary>
|
||||
public RTHandle AtlasTexture
|
||||
{
|
||||
get
|
||||
{
|
||||
return m_AtlasTexture;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a new empty texture atlas.
|
||||
/// </summary>
|
||||
/// <param name="width">Width of the atlas in pixels.</param>
|
||||
/// <param name="height">Height of atlas in pixels.</param>
|
||||
/// <param name="format">GraphicsFormat of the atlas.</param>
|
||||
/// <param name="filterMode">Filtering mode of the atlas.</param>
|
||||
/// <param name="powerOfTwoPadding">Power of two padding.</param>
|
||||
/// <param name="name">Name of the atlas</param>
|
||||
/// <param name="useMipMap">Use mip maps</param>
|
||||
public Texture2DAtlas(int width, int height, GraphicsFormat format, FilterMode filterMode = FilterMode.Point, bool powerOfTwoPadding = false, string name = "", bool useMipMap = true)
|
||||
{
|
||||
m_Width = width;
|
||||
m_Height = height;
|
||||
m_Format = format;
|
||||
m_UseMipMaps = useMipMap;
|
||||
m_AtlasTexture = RTHandles.Alloc(
|
||||
width: m_Width,
|
||||
height: m_Height,
|
||||
filterMode: filterMode,
|
||||
colorFormat: m_Format,
|
||||
wrapMode: TextureWrapMode.Clamp,
|
||||
useMipMap: useMipMap,
|
||||
autoGenerateMips: false,
|
||||
name: name
|
||||
);
|
||||
m_IsAtlasTextureOwner = true;
|
||||
|
||||
// We clear on create to avoid garbage data to be present in the atlas
|
||||
int mipCount = useMipMap ? GetTextureMipmapCount(m_Width, m_Height) : 1;
|
||||
for (int mipIdx = 0; mipIdx < mipCount; ++mipIdx)
|
||||
{
|
||||
Graphics.SetRenderTarget(m_AtlasTexture, mipIdx);
|
||||
GL.Clear(false, true, Color.clear);
|
||||
}
|
||||
|
||||
m_AtlasAllocator = new AtlasAllocator(width, height, powerOfTwoPadding);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Release atlas resources.
|
||||
/// </summary>
|
||||
public void Release()
|
||||
{
|
||||
ResetAllocator();
|
||||
if (m_IsAtlasTextureOwner) { RTHandles.Release(m_AtlasTexture); }
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Clear atlas sub-texture allocations.
|
||||
/// </summary>
|
||||
public void ResetAllocator()
|
||||
{
|
||||
m_AtlasAllocator.Reset();
|
||||
m_AllocationCache.Clear();
|
||||
|
||||
m_IsGPUTextureUpToDate.Clear(); // mark all GPU textures as invalid.
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Clear atlas texture.
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// </summary>
|
||||
public void ClearTarget(CommandBuffer cmd)
|
||||
{
|
||||
int mipCount = (m_UseMipMaps) ? GetTextureMipmapCount(m_Width, m_Height) : 1;
|
||||
|
||||
// clear the atlas by blitting a black texture at every mips
|
||||
for (int mipLevel = 0; mipLevel < mipCount; mipLevel++)
|
||||
{
|
||||
cmd.SetRenderTarget(m_AtlasTexture, mipLevel);
|
||||
Blitter.BlitQuad(cmd, Texture2D.blackTexture, fullScaleOffset, fullScaleOffset, mipLevel, true);
|
||||
}
|
||||
|
||||
m_IsGPUTextureUpToDate.Clear(); // mark all GPU textures as invalid.
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Return texture mip map count based on the width and height.
|
||||
/// </summary>
|
||||
/// <param name="width">The texture width in pixels.</param>
|
||||
/// <param name="height">The texture height in pixels.</param>
|
||||
/// <returns>The number of mip maps.</returns>
|
||||
private protected int GetTextureMipmapCount(int width, int height)
|
||||
{
|
||||
if (!m_UseMipMaps)
|
||||
return 1;
|
||||
|
||||
// We don't care about the real mipmap count in the texture because they are generated by the atlas
|
||||
float maxSize = Mathf.Max(width, height);
|
||||
return Mathf.FloorToInt(Mathf.Log(maxSize, 2)) + 1;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Test if a texture is a 2D texture.
|
||||
/// </summary>
|
||||
/// <param name="texture">Source texture.</param>
|
||||
/// <returns>True if texture is 2D, false otherwise.</returns>
|
||||
private protected bool Is2D(Texture texture)
|
||||
{
|
||||
RenderTexture rt = texture as RenderTexture;
|
||||
|
||||
return (texture is Texture2D || rt?.dimension == TextureDimension.Tex2D);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Checks if single/multi/single channel format conversion is required.
|
||||
/// </summary>
|
||||
/// <param name="source">Blit source texture</param>
|
||||
/// <param name="destination">Blit destination texture</param>
|
||||
/// <returns>true on single channel conversion false otherwise</returns>
|
||||
private protected bool IsSingleChannelBlit(Texture source, Texture destination)
|
||||
{
|
||||
var srcCount = GraphicsFormatUtility.GetComponentCount(source.graphicsFormat);
|
||||
var dstCount = GraphicsFormatUtility.GetComponentCount(destination.graphicsFormat);
|
||||
if (srcCount == 1 || dstCount == 1)
|
||||
{
|
||||
// One to many, many to one
|
||||
if (srcCount != dstCount)
|
||||
return true;
|
||||
|
||||
// Single channel swizzle
|
||||
var srcSwizzle =
|
||||
((1 << ((int)GraphicsFormatUtility.GetSwizzleA(source.graphicsFormat) & 0x7)) << 24) |
|
||||
((1 << ((int)GraphicsFormatUtility.GetSwizzleB(source.graphicsFormat) & 0x7)) << 16) |
|
||||
((1 << ((int)GraphicsFormatUtility.GetSwizzleG(source.graphicsFormat) & 0x7)) << 8) |
|
||||
((1 << ((int)GraphicsFormatUtility.GetSwizzleR(source.graphicsFormat) & 0x7)));
|
||||
var dstSwizzle =
|
||||
((1 << ((int)GraphicsFormatUtility.GetSwizzleA(destination.graphicsFormat) & 0x7)) << 24) |
|
||||
((1 << ((int)GraphicsFormatUtility.GetSwizzleB(destination.graphicsFormat) & 0x7)) << 16) |
|
||||
((1 << ((int)GraphicsFormatUtility.GetSwizzleG(destination.graphicsFormat) & 0x7)) << 8) |
|
||||
((1 << ((int)GraphicsFormatUtility.GetSwizzleR(destination.graphicsFormat) & 0x7)));
|
||||
if (srcSwizzle != dstSwizzle)
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
private void Blit2DTexture(CommandBuffer cmd, Vector4 scaleOffset, Texture texture, Vector4 sourceScaleOffset, bool blitMips, BlitType blitType)
|
||||
{
|
||||
int mipCount = GetTextureMipmapCount(texture.width, texture.height);
|
||||
|
||||
if (!blitMips)
|
||||
mipCount = 1;
|
||||
|
||||
for (int mipLevel = 0; mipLevel < mipCount; mipLevel++)
|
||||
{
|
||||
cmd.SetRenderTarget(m_AtlasTexture, mipLevel);
|
||||
switch (blitType)
|
||||
{
|
||||
case BlitType.Default: Blitter.BlitQuad(cmd, texture, sourceScaleOffset, scaleOffset, mipLevel, true); break;
|
||||
case BlitType.CubeTo2DOctahedral: Blitter.BlitCubeToOctahedral2DQuad(cmd, texture, scaleOffset, mipLevel); break;
|
||||
case BlitType.SingleChannel: Blitter.BlitQuadSingleChannel(cmd, texture, sourceScaleOffset, scaleOffset, mipLevel); break;
|
||||
case BlitType.CubeTo2DOctahedralSingleChannel: Blitter.BlitCubeToOctahedral2DQuadSingleChannel(cmd, texture, scaleOffset, mipLevel); break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Mark texture valid on the GPU.
|
||||
/// </summary>
|
||||
/// <param name="instanceId">Texture instance ID.</param>
|
||||
/// <param name="mipAreValid">Texture has valid mip maps.</param>
|
||||
private protected void MarkGPUTextureValid(int instanceId, bool mipAreValid = false)
|
||||
{
|
||||
m_IsGPUTextureUpToDate[instanceId] = (mipAreValid) ? kGPUTexValidMipAll : kGPUTexValidMip0;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Mark texture invalid on the GPU.
|
||||
/// </summary>
|
||||
/// <param name="instanceId">Texture instance ID.</param>
|
||||
private protected void MarkGPUTextureInvalid(int instanceId) => m_IsGPUTextureUpToDate[instanceId] = kGPUTexInvalid;
|
||||
|
||||
/// <summary>
|
||||
/// Blit 2D texture into the atlas.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="scaleOffset">Destination scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="texture">Source Texture</param>
|
||||
/// <param name="sourceScaleOffset">Source scale (.xy) and offset(.zw).</param>
|
||||
/// <param name="blitMips">Blit mip maps.</param>
|
||||
/// <param name="overrideInstanceID">Override texture instance ID.</param>
|
||||
public virtual void BlitTexture(CommandBuffer cmd, Vector4 scaleOffset, Texture texture, Vector4 sourceScaleOffset, bool blitMips = true, int overrideInstanceID = -1)
|
||||
{
|
||||
// This atlas only support 2D texture so we only blit 2D textures
|
||||
if (Is2D(texture))
|
||||
{
|
||||
BlitType blitType = BlitType.Default;
|
||||
if (IsSingleChannelBlit(texture, m_AtlasTexture.m_RT))
|
||||
blitType = BlitType.SingleChannel;
|
||||
|
||||
Blit2DTexture(cmd, scaleOffset, texture, sourceScaleOffset, blitMips, blitType);
|
||||
var instanceID = overrideInstanceID != -1 ? overrideInstanceID : GetTextureID(texture);
|
||||
MarkGPUTextureValid(instanceID, blitMips);
|
||||
m_TextureHashes[instanceID] = CoreUtils.GetTextureHash(texture);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Blit octahedral texture into the atlas.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="scaleOffset">Destination scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="texture">Source Texture</param>
|
||||
/// <param name="sourceScaleOffset">Source scale (.xy) and offset(.zw).</param>
|
||||
/// <param name="blitMips">Blit mip maps.</param>
|
||||
/// <param name="overrideInstanceID">Override texture instance ID.</param>
|
||||
public virtual void BlitOctahedralTexture(CommandBuffer cmd, Vector4 scaleOffset, Texture texture, Vector4 sourceScaleOffset, bool blitMips = true, int overrideInstanceID = -1)
|
||||
{
|
||||
// Default implementation. No padding in Texture2DAtlas, no need to handle specially.
|
||||
BlitTexture(cmd, scaleOffset, texture, sourceScaleOffset, blitMips, overrideInstanceID);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Blit and project Cube texture into a 2D texture in the atlas.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="scaleOffset">Destination scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="texture">Source Texture</param>
|
||||
/// <param name="blitMips">Blit mip maps.</param>
|
||||
/// <param name="overrideInstanceID">Override texture instance ID.</param>
|
||||
public virtual void BlitCubeTexture2D(CommandBuffer cmd, Vector4 scaleOffset, Texture texture, bool blitMips = true, int overrideInstanceID = -1)
|
||||
{
|
||||
Debug.Assert(texture.dimension == TextureDimension.Cube);
|
||||
|
||||
// This atlas only support 2D texture so we map Cube into set of 2D textures
|
||||
if (texture.dimension == TextureDimension.Cube)
|
||||
{
|
||||
BlitType blitType = BlitType.CubeTo2DOctahedral;
|
||||
if (IsSingleChannelBlit(texture, m_AtlasTexture.m_RT))
|
||||
blitType = BlitType.CubeTo2DOctahedralSingleChannel;
|
||||
|
||||
// By default blit cube into a single octahedral 2D texture quad
|
||||
Blit2DTexture(cmd, scaleOffset, texture, new Vector4(1.0f, 1.0f, 0.0f, 0.0f), blitMips, blitType);
|
||||
|
||||
var instanceID = overrideInstanceID != -1 ? overrideInstanceID : GetTextureID(texture);
|
||||
MarkGPUTextureValid(instanceID, blitMips);
|
||||
m_TextureHashes[instanceID] = CoreUtils.GetTextureHash(texture);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate space from the atlas for a texture and copy texture contents into the atlas.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="scaleOffset">Destination scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="texture">Source Texture</param>
|
||||
/// <param name="width">Request width in pixels.</param>
|
||||
/// <param name="height">Request height in pixels.</param>
|
||||
/// <param name="overrideInstanceID">Override texture instance ID.</param>
|
||||
/// <returns></returns>
|
||||
public virtual bool AllocateTexture(CommandBuffer cmd, ref Vector4 scaleOffset, Texture texture, int width, int height, int overrideInstanceID = -1)
|
||||
{
|
||||
var instanceID = overrideInstanceID != -1 ? overrideInstanceID : GetTextureID(texture);
|
||||
bool allocated = AllocateTextureWithoutBlit(instanceID, width, height, ref scaleOffset);
|
||||
|
||||
if (allocated)
|
||||
{
|
||||
if (Is2D(texture))
|
||||
BlitTexture(cmd, scaleOffset, texture, fullScaleOffset);
|
||||
else
|
||||
BlitCubeTexture2D(cmd, scaleOffset, texture, true);
|
||||
|
||||
// texture is up to date
|
||||
MarkGPUTextureValid(instanceID, true);
|
||||
m_TextureHashes[instanceID] = CoreUtils.GetTextureHash(texture);
|
||||
}
|
||||
|
||||
return allocated;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate space from the atlas for a texture.
|
||||
/// </summary>
|
||||
/// <param name="texture">Source texture.</param>
|
||||
/// <param name="width">Request width in pixels.</param>
|
||||
/// <param name="height">Request height in pixels.</param>
|
||||
/// <param name="scaleOffset">Allocated scale (.xy) and offset (.zw).</param>
|
||||
/// <returns>True on success, false otherwise.</returns>
|
||||
public bool AllocateTextureWithoutBlit(Texture texture, int width, int height, ref Vector4 scaleOffset)
|
||||
=> AllocateTextureWithoutBlit(texture.GetInstanceID(), width, height, ref scaleOffset);
|
||||
|
||||
/// <summary>
|
||||
/// Allocate space from the atlas for a texture.
|
||||
/// </summary>
|
||||
/// <param name="instanceId">Source texture instance ID.</param>
|
||||
/// <param name="width">Request width in pixels.</param>
|
||||
/// <param name="height">Request height in pixels.</param>
|
||||
/// <param name="scaleOffset">Allocated scale (.xy) and offset (.zw).</param>
|
||||
/// <returns>True on success, false otherwise.</returns>
|
||||
public virtual bool AllocateTextureWithoutBlit(int instanceId, int width, int height, ref Vector4 scaleOffset)
|
||||
{
|
||||
scaleOffset = Vector4.zero;
|
||||
|
||||
if (m_AtlasAllocator.Allocate(ref scaleOffset, width, height))
|
||||
{
|
||||
scaleOffset.Scale(new Vector4(1.0f / m_Width, 1.0f / m_Height, 1.0f / m_Width, 1.0f / m_Height));
|
||||
m_AllocationCache[instanceId] = (scaleOffset, new Vector2Int(width, height));
|
||||
MarkGPUTextureInvalid(instanceId); // the texture data haven't been uploaded
|
||||
m_TextureHashes[instanceId] = -1;
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Compute hash from texture properties.
|
||||
/// </summary>
|
||||
/// <param name="textureA">Source texture A.</param>
|
||||
/// <param name="textureB">Source texture B.</param>
|
||||
/// <returns>Hash of texture porperties.</returns>
|
||||
private protected int GetTextureHash(Texture textureA, Texture textureB)
|
||||
{
|
||||
int hash = CoreUtils.GetTextureHash(textureA) + 23 * CoreUtils.GetTextureHash(textureB);
|
||||
return hash;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get sub-texture ID for the atlas.
|
||||
/// </summary>
|
||||
/// <param name="texture">Source texture.</param>
|
||||
/// <returns>Texture instance ID.</returns>
|
||||
public int GetTextureID(Texture texture)
|
||||
{
|
||||
return texture.GetInstanceID();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get sub-texture ID for the atlas.
|
||||
/// </summary>
|
||||
/// <param name="textureA">Source texture A.</param>
|
||||
/// <param name="textureB">Source texture B.</param>
|
||||
/// <returns>Combined texture instance ID.</returns>
|
||||
public int GetTextureID(Texture textureA, Texture textureB)
|
||||
{
|
||||
return GetTextureID(textureA) + 23 * GetTextureID(textureB);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Check if the atlas contains the textures.
|
||||
/// </summary>
|
||||
/// <param name="scaleOffset">Texture scale (.xy) and offset (.zw).</param>
|
||||
/// <param name="textureA">Source texture A.</param>
|
||||
/// <param name="textureB">Source texture B.</param>
|
||||
/// <returns>True if the texture is in the atlas, false otherwise.</returns>
|
||||
public bool IsCached(out Vector4 scaleOffset, Texture textureA, Texture textureB)
|
||||
=> IsCached(out scaleOffset, GetTextureID(textureA, textureB));
|
||||
|
||||
/// <summary>
|
||||
/// Check if the atlas contains the textures.
|
||||
/// </summary>
|
||||
/// <param name="scaleOffset">Texture scale (.xy) and offset (.zw).</param>
|
||||
/// <param name="textureA">Source texture</param>
|
||||
/// <returns>True if the texture is in the atlas, false otherwise.</returns>
|
||||
public bool IsCached(out Vector4 scaleOffset, Texture texture)
|
||||
=> IsCached(out scaleOffset, GetTextureID(texture));
|
||||
|
||||
/// <summary>
|
||||
/// Check if the atlas contains the texture.
|
||||
/// </summary>
|
||||
/// <param name="scaleOffset">Texture scale (.xy) and offset (.zw).</param>
|
||||
/// <param name="id">Source texture instance ID.</param>
|
||||
/// <returns></returns>
|
||||
public bool IsCached(out Vector4 scaleOffset, int id)
|
||||
{
|
||||
bool cached = m_AllocationCache.TryGetValue(id, out var value);
|
||||
scaleOffset = value.scaleOffset;
|
||||
return cached;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get cached texture size.
|
||||
/// </summary>
|
||||
/// <param name="id">Source texture instance ID.</param>
|
||||
/// <returns>Texture size.</returns>
|
||||
internal Vector2Int GetCachedTextureSize(int id)
|
||||
{
|
||||
m_AllocationCache.TryGetValue(id, out var value);
|
||||
return value.size;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Check if contents of a texture needs to be updated in the atlas.
|
||||
/// </summary>
|
||||
/// <param name="texture">Source texture.</param>
|
||||
/// <param name="needMips">Texture uses mips.</param>
|
||||
/// <returns>True if texture needs update, false otherwise.</returns>
|
||||
public virtual bool NeedsUpdate(Texture texture, bool needMips = false)
|
||||
{
|
||||
RenderTexture rt = texture as RenderTexture;
|
||||
int key = GetTextureID(texture);
|
||||
int textureHash = CoreUtils.GetTextureHash(texture);
|
||||
|
||||
// Update the render texture if needed
|
||||
if (rt != null)
|
||||
{
|
||||
int updateCount;
|
||||
if (m_IsGPUTextureUpToDate.TryGetValue(key, out updateCount))
|
||||
{
|
||||
if (rt.updateCount != updateCount)
|
||||
{
|
||||
m_IsGPUTextureUpToDate[key] = (int)rt.updateCount;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
m_IsGPUTextureUpToDate[key] = (int)rt.updateCount;
|
||||
}
|
||||
}
|
||||
// In case the texture settings/import settings have changed, we need to update it
|
||||
else if (m_TextureHashes.TryGetValue(key, out int hash) && hash != textureHash)
|
||||
{
|
||||
m_TextureHashes[key] = textureHash;
|
||||
return true;
|
||||
}
|
||||
// For regular textures, values == 0 means that their GPU data needs to be updated (either because
|
||||
// the atlas have been re-layouted or the texture have never been uploaded. We also check if the mips
|
||||
// are valid for the texture if we need them
|
||||
else if (m_IsGPUTextureUpToDate.TryGetValue(key, out var value))
|
||||
return value == kGPUTexInvalid || (needMips && value == kGPUTexValidMip0);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Check if contents of a texture needs to be updated in the atlas.
|
||||
/// </summary>
|
||||
/// <param name="textureA">Source texture A.</param>
|
||||
/// <param name="textureB">Source texture B.</param>
|
||||
/// <param name="needMips">Texture uses mips.</param>
|
||||
/// <returns>True if texture needs update, false otherwise.</returns>
|
||||
public virtual bool NeedsUpdate(Texture textureA, Texture textureB, bool needMips = false)
|
||||
{
|
||||
RenderTexture rtA = textureA as RenderTexture;
|
||||
RenderTexture rtB = textureB as RenderTexture;
|
||||
int key = GetTextureID(textureA, textureB);
|
||||
int textureHash = GetTextureHash(textureA, textureB);
|
||||
|
||||
// Update the render texture if needed
|
||||
if (rtA != null || rtB != null)
|
||||
{
|
||||
int updateCount;
|
||||
if (m_IsGPUTextureUpToDate.TryGetValue(key, out updateCount))
|
||||
{
|
||||
if (rtA != null && rtB != null && Math.Min(rtA.updateCount, rtB.updateCount) != updateCount)
|
||||
{
|
||||
m_IsGPUTextureUpToDate[key] = (int)Math.Min(rtA.updateCount, rtB.updateCount);
|
||||
return true;
|
||||
}
|
||||
else if (rtA != null && rtA.updateCount != updateCount)
|
||||
{
|
||||
m_IsGPUTextureUpToDate[key] = (int)rtA.updateCount;
|
||||
return true;
|
||||
}
|
||||
else if (rtB != null && rtB.updateCount != updateCount)
|
||||
{
|
||||
m_IsGPUTextureUpToDate[key] = (int)rtB.updateCount;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
m_IsGPUTextureUpToDate[key] = textureHash;
|
||||
}
|
||||
}
|
||||
// In case the texture settings/import settings have changed, we need to update it
|
||||
else if (m_TextureHashes.TryGetValue(key, out int hash) && hash != textureHash)
|
||||
{
|
||||
m_TextureHashes[key] = key;
|
||||
return true;
|
||||
}
|
||||
// For regular textures, values == 0 means that their GPU data needs to be updated (either because
|
||||
// the atlas have been re-layouted or the texture have never been uploaded. We also check if the mips
|
||||
// are valid for the texture if we need them
|
||||
else if (m_IsGPUTextureUpToDate.TryGetValue(key, out var value))
|
||||
return value == kGPUTexInvalid || (needMips && value == kGPUTexValidMip0);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Add a texture into the atlas.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Command buffer used for texture copy.</param>
|
||||
/// <param name="scaleOffset">Sub-texture rectangle for the added texture. Scale in .xy, offset int .zw</param>
|
||||
/// <param name="texture">The texture to be added.</param>
|
||||
/// <returns>True if the atlas contains the texture, false otherwise.</returns>
|
||||
public virtual bool AddTexture(CommandBuffer cmd, ref Vector4 scaleOffset, Texture texture)
|
||||
{
|
||||
if (IsCached(out scaleOffset, texture))
|
||||
return true;
|
||||
|
||||
return AllocateTexture(cmd, ref scaleOffset, texture, texture.width, texture.height);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Update a texture in the atlas.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="oldTexture">Texture in atlas.</param>
|
||||
/// <param name="newTexture">Replacement source texture.</param>
|
||||
/// <param name="scaleOffset">Destination scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="sourceScaleOffset">Source scale (.xy) and offset(.zw).</param>
|
||||
/// <param name="updateIfNeeded">Enable texture blit.</param>
|
||||
/// <param name="blitMips">Blit mip maps.</param>
|
||||
/// <returns>True on success, false otherwise.</returns>
|
||||
public virtual bool UpdateTexture(CommandBuffer cmd, Texture oldTexture, Texture newTexture, ref Vector4 scaleOffset, Vector4 sourceScaleOffset, bool updateIfNeeded = true, bool blitMips = true)
|
||||
{
|
||||
// In case the old texture is here, we Blit the new one at the scale offset of the old one
|
||||
if (IsCached(out scaleOffset, oldTexture))
|
||||
{
|
||||
if (updateIfNeeded && NeedsUpdate(newTexture))
|
||||
{
|
||||
if (Is2D(newTexture))
|
||||
BlitTexture(cmd, scaleOffset, newTexture, sourceScaleOffset, blitMips);
|
||||
else
|
||||
BlitCubeTexture2D(cmd, scaleOffset, newTexture, blitMips);
|
||||
MarkGPUTextureValid(GetTextureID(newTexture), blitMips); // texture is up to date
|
||||
}
|
||||
return true;
|
||||
}
|
||||
else // else we try to allocate the updated texture
|
||||
{
|
||||
return AllocateTexture(cmd, ref scaleOffset, newTexture, newTexture.width, newTexture.height);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Update a texture in the atlas.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Target command buffer for graphics commands.</param>
|
||||
/// <param name="texture">Texture in atlas.</param>
|
||||
/// <param name="scaleOffset">Destination scale (.xy) and offset (.zw)</param>
|
||||
/// <param name="updateIfNeeded">Enable texture blit.</param>
|
||||
/// <param name="blitMips">Blit mip maps.</param>
|
||||
/// <returns>True on success, false otherwise.</returns>
|
||||
public virtual bool UpdateTexture(CommandBuffer cmd, Texture texture, ref Vector4 scaleOffset, bool updateIfNeeded = true, bool blitMips = true)
|
||||
=> UpdateTexture(cmd, texture, texture, ref scaleOffset, fullScaleOffset, updateIfNeeded, blitMips);
|
||||
|
||||
internal bool EnsureTextureSlot(out bool isUploadNeeded, ref Vector4 scaleBias, int key, int width, int height)
|
||||
{
|
||||
isUploadNeeded = false;
|
||||
if (m_AllocationCache.TryGetValue(key, out var value))
|
||||
{
|
||||
scaleBias = value.scaleOffset;
|
||||
return true;
|
||||
}
|
||||
if (!m_AtlasAllocator.Allocate(ref scaleBias, width, height))
|
||||
return false;
|
||||
isUploadNeeded = true;
|
||||
scaleBias.Scale(new Vector4(1.0f / m_Width, 1.0f / m_Height, 1.0f / m_Width, 1.0f / m_Height));
|
||||
m_AllocationCache.Add(key, (scaleBias, new Vector2Int(width, height)));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
fileFormatVersion: 2
|
||||
guid: f506a28e45debb5419431b32414aba80
|
||||
MonoImporter:
|
||||
externalObjects: {}
|
||||
serializedVersion: 2
|
||||
defaultReferences: []
|
||||
executionOrder: 0
|
||||
icon: {instanceID: 0}
|
||||
userData:
|
||||
assetBundleName:
|
||||
assetBundleVariant:
|
||||
|
|
@ -0,0 +1,492 @@
|
|||
using System.Collections.Generic;
|
||||
using UnityEngine.Experimental.Rendering;
|
||||
using System;
|
||||
using System.Runtime.InteropServices;
|
||||
|
||||
namespace UnityEngine.Rendering
|
||||
{
|
||||
class AtlasAllocatorDynamic
|
||||
{
|
||||
private class AtlasNodePool
|
||||
{
|
||||
internal AtlasNode[] m_Nodes;
|
||||
Int16 m_Next;
|
||||
Int16 m_FreelistHead;
|
||||
|
||||
public AtlasNodePool(Int16 capacity)
|
||||
{
|
||||
m_Nodes = new AtlasNode[capacity];
|
||||
m_Next = 0;
|
||||
m_FreelistHead = -1;
|
||||
}
|
||||
|
||||
public void Dispose()
|
||||
{
|
||||
Clear();
|
||||
m_Nodes = null;
|
||||
}
|
||||
|
||||
public void Clear()
|
||||
{
|
||||
m_Next = 0;
|
||||
m_FreelistHead = -1;
|
||||
}
|
||||
|
||||
public Int16 AtlasNodeCreate(Int16 parent)
|
||||
{
|
||||
Debug.Assert((m_Next < m_Nodes.Length) || (m_FreelistHead != -1), "Error: AtlasNodePool: Out of memory. Please pre-allocate pool to larger capacity");
|
||||
|
||||
if (m_FreelistHead != -1)
|
||||
{
|
||||
Int16 freelistHeadNext = m_Nodes[m_FreelistHead].m_FreelistNext;
|
||||
m_Nodes[m_FreelistHead] = new AtlasNode(m_FreelistHead, parent);
|
||||
Int16 res = m_FreelistHead;
|
||||
m_FreelistHead = freelistHeadNext;
|
||||
return res;
|
||||
}
|
||||
|
||||
m_Nodes[m_Next] = new AtlasNode(m_Next, parent);
|
||||
return m_Next++;
|
||||
}
|
||||
|
||||
public void AtlasNodeFree(Int16 index)
|
||||
{
|
||||
Debug.Assert(index >= 0 && index < m_Nodes.Length, "Error: AtlasNodeFree: index out of range.");
|
||||
m_Nodes[index].m_FreelistNext = m_FreelistHead;
|
||||
m_FreelistHead = index;
|
||||
}
|
||||
}
|
||||
|
||||
[StructLayout(LayoutKind.Explicit, Size = 32)]
|
||||
private struct AtlasNode
|
||||
{
|
||||
private enum AtlasNodeFlags : uint
|
||||
{
|
||||
IsOccupied = 1 << 0
|
||||
}
|
||||
|
||||
[FieldOffset(0)] public Int16 m_Self;
|
||||
[FieldOffset(2)] public Int16 m_Parent;
|
||||
[FieldOffset(4)] public Int16 m_LeftChild;
|
||||
[FieldOffset(6)] public Int16 m_RightChild;
|
||||
[FieldOffset(8)] public Int16 m_FreelistNext;
|
||||
[FieldOffset(10)] public UInt16 m_Flags;
|
||||
// [15:12] bytes are padding
|
||||
[FieldOffset(16)] public Vector4 m_Rect;
|
||||
|
||||
public AtlasNode(Int16 self, Int16 parent)
|
||||
{
|
||||
m_Self = self;
|
||||
m_Parent = parent;
|
||||
m_LeftChild = -1;
|
||||
m_RightChild = -1;
|
||||
m_Flags = 0;
|
||||
m_FreelistNext = -1;
|
||||
m_Rect = Vector4.zero; // x,y is width and height (scale) z,w offset into atlas (bias)
|
||||
}
|
||||
|
||||
public bool IsOccupied()
|
||||
{
|
||||
return (m_Flags & (UInt16)AtlasNodeFlags.IsOccupied) > 0;
|
||||
}
|
||||
|
||||
public void SetIsOccupied()
|
||||
{
|
||||
UInt16 isOccupiedMask = (UInt16)AtlasNodeFlags.IsOccupied;
|
||||
m_Flags |= isOccupiedMask;
|
||||
}
|
||||
|
||||
public void ClearIsOccupied()
|
||||
{
|
||||
UInt16 isOccupiedMask = (UInt16)AtlasNodeFlags.IsOccupied;
|
||||
m_Flags &= (UInt16)~isOccupiedMask;
|
||||
}
|
||||
|
||||
public bool IsLeafNode()
|
||||
{
|
||||
// Note: Only need to check if m_LeftChild == null, as either both are allocated (split), or none are allocated (leaf).
|
||||
return m_LeftChild == -1;
|
||||
}
|
||||
|
||||
public Int16 Allocate(AtlasNodePool pool, int width, int height)
|
||||
{
|
||||
if (Mathf.Min(width, height) < 1)
|
||||
{
|
||||
// Degenerate allocation requested.
|
||||
Debug.Assert(false, "Error: Texture2DAtlasDynamic: Attempted to allocate a degenerate region. Please ensure width and height are >= 1");
|
||||
return -1;
|
||||
}
|
||||
|
||||
// not a leaf node, try children
|
||||
// TODO: Rather than always going left, then right, we might want to always attempt to allocate in the smaller child, then larger.
|
||||
if (!IsLeafNode())
|
||||
{
|
||||
Int16 node = pool.m_Nodes[m_LeftChild].Allocate(pool, width, height);
|
||||
if (node == -1)
|
||||
{
|
||||
node = pool.m_Nodes[m_RightChild].Allocate(pool, width, height);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
// leaf node, check for fit
|
||||
if (IsOccupied()) { return -1; }
|
||||
if (width > m_Rect.x || height > m_Rect.y) { return -1; }
|
||||
|
||||
// perform the split
|
||||
Debug.Assert(m_LeftChild == -1);
|
||||
Debug.Assert(m_RightChild == -1);
|
||||
m_LeftChild = pool.AtlasNodeCreate(m_Self);
|
||||
m_RightChild = pool.AtlasNodeCreate(m_Self);
|
||||
// Debug.Log("m_LeftChild = " + m_LeftChild);
|
||||
// Debug.Log("m_RightChild = " + m_RightChild);
|
||||
|
||||
Debug.Assert(m_LeftChild >= 0 && m_LeftChild < pool.m_Nodes.Length);
|
||||
Debug.Assert(m_RightChild >= 0 && m_RightChild < pool.m_Nodes.Length);
|
||||
|
||||
// Debug.Log("Rect = {" + m_Rect.x + ", " + m_Rect.y + ", " + m_Rect.z + ", " + m_Rect.w + "}");
|
||||
|
||||
float deltaX = m_Rect.x - width;
|
||||
float deltaY = m_Rect.y - height;
|
||||
// Debug.Log("deltaX = " + deltaX);
|
||||
// Debug.Log("deltaY = " + deltaY);
|
||||
|
||||
if (deltaX >= deltaY)
|
||||
{
|
||||
// Debug.Log("Split horizontally");
|
||||
// +--------+------+
|
||||
// | | |
|
||||
// | | |
|
||||
// | | |
|
||||
// | | |
|
||||
// +--------+------+
|
||||
pool.m_Nodes[m_LeftChild].m_Rect.x = width;
|
||||
pool.m_Nodes[m_LeftChild].m_Rect.y = m_Rect.y;
|
||||
pool.m_Nodes[m_LeftChild].m_Rect.z = m_Rect.z;
|
||||
pool.m_Nodes[m_LeftChild].m_Rect.w = m_Rect.w;
|
||||
|
||||
pool.m_Nodes[m_RightChild].m_Rect.x = deltaX;
|
||||
pool.m_Nodes[m_RightChild].m_Rect.y = m_Rect.y;
|
||||
pool.m_Nodes[m_RightChild].m_Rect.z = m_Rect.z + width;
|
||||
pool.m_Nodes[m_RightChild].m_Rect.w = m_Rect.w;
|
||||
|
||||
if (deltaY < 1)
|
||||
{
|
||||
pool.m_Nodes[m_LeftChild].SetIsOccupied();
|
||||
return m_LeftChild;
|
||||
}
|
||||
else
|
||||
{
|
||||
Int16 node = pool.m_Nodes[m_LeftChild].Allocate(pool, width, height);
|
||||
if (node >= 0) { pool.m_Nodes[node].SetIsOccupied(); }
|
||||
return node;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Debug.Log("Split vertically.");
|
||||
// +---------------+
|
||||
// | |
|
||||
// |---------------|
|
||||
// | |
|
||||
// | |
|
||||
// +---------------+
|
||||
pool.m_Nodes[m_LeftChild].m_Rect.x = m_Rect.x;
|
||||
pool.m_Nodes[m_LeftChild].m_Rect.y = height;
|
||||
pool.m_Nodes[m_LeftChild].m_Rect.z = m_Rect.z;
|
||||
pool.m_Nodes[m_LeftChild].m_Rect.w = m_Rect.w;
|
||||
|
||||
pool.m_Nodes[m_RightChild].m_Rect.x = m_Rect.x;
|
||||
pool.m_Nodes[m_RightChild].m_Rect.y = deltaY;
|
||||
pool.m_Nodes[m_RightChild].m_Rect.z = m_Rect.z;
|
||||
pool.m_Nodes[m_RightChild].m_Rect.w = m_Rect.w + height;
|
||||
|
||||
if (deltaX < 1)
|
||||
{
|
||||
pool.m_Nodes[m_LeftChild].SetIsOccupied();
|
||||
return m_LeftChild;
|
||||
}
|
||||
else
|
||||
{
|
||||
Int16 node = pool.m_Nodes[m_LeftChild].Allocate(pool, width, height);
|
||||
if (node >= 0) { pool.m_Nodes[node].SetIsOccupied(); }
|
||||
return node;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public void ReleaseChildren(AtlasNodePool pool)
|
||||
{
|
||||
if (IsLeafNode()) { return; }
|
||||
pool.m_Nodes[m_LeftChild].ReleaseChildren(pool);
|
||||
pool.m_Nodes[m_RightChild].ReleaseChildren(pool);
|
||||
|
||||
pool.AtlasNodeFree(m_LeftChild);
|
||||
pool.AtlasNodeFree(m_RightChild);
|
||||
m_LeftChild = -1;
|
||||
m_RightChild = -1;
|
||||
}
|
||||
|
||||
public void ReleaseAndMerge(AtlasNodePool pool)
|
||||
{
|
||||
Int16 n = m_Self;
|
||||
do
|
||||
{
|
||||
pool.m_Nodes[n].ReleaseChildren(pool);
|
||||
pool.m_Nodes[n].ClearIsOccupied();
|
||||
n = pool.m_Nodes[n].m_Parent;
|
||||
}
|
||||
while (n >= 0 && pool.m_Nodes[n].IsMergeNeeded(pool));
|
||||
}
|
||||
|
||||
public bool IsMergeNeeded(AtlasNodePool pool)
|
||||
{
|
||||
return pool.m_Nodes[m_LeftChild].IsLeafNode() && (!pool.m_Nodes[m_LeftChild].IsOccupied())
|
||||
&& pool.m_Nodes[m_RightChild].IsLeafNode() && (!pool.m_Nodes[m_RightChild].IsOccupied());
|
||||
}
|
||||
}
|
||||
|
||||
private int m_Width;
|
||||
private int m_Height;
|
||||
private AtlasNodePool m_Pool;
|
||||
private Int16 m_Root;
|
||||
private Dictionary<int, Int16> m_NodeFromID;
|
||||
|
||||
public AtlasAllocatorDynamic(int width, int height, int capacityAllocations)
|
||||
{
|
||||
// In an evenly split binary tree, the nodeCount == leafNodeCount * 2
|
||||
int capacityNodes = capacityAllocations * 2;
|
||||
Debug.Assert(capacityNodes < (1 << 16), "Error: AtlasAllocatorDynamic: Attempted to allocate a capacity of " + capacityNodes + ", which is greater than our 16-bit indices can support. Please request a capacity <=" + (1 << 16));
|
||||
m_Pool = new AtlasNodePool((Int16)capacityNodes);
|
||||
|
||||
m_NodeFromID = new Dictionary<int, Int16>(capacityAllocations);
|
||||
|
||||
Int16 rootParent = -1;
|
||||
m_Root = m_Pool.AtlasNodeCreate(rootParent);
|
||||
m_Pool.m_Nodes[m_Root].m_Rect.Set(width, height, 0, 0);
|
||||
m_Width = width;
|
||||
m_Height = height;
|
||||
|
||||
// string debug = "";
|
||||
// DebugStringFromNode(ref debug, m_Root);
|
||||
// Debug.Log("Allocating atlas = " + debug);
|
||||
}
|
||||
|
||||
public bool Allocate(out Vector4 result, int key, int width, int height)
|
||||
{
|
||||
Int16 node = m_Pool.m_Nodes[m_Root].Allocate(m_Pool, width, height);
|
||||
if (node >= 0)
|
||||
{
|
||||
result = m_Pool.m_Nodes[node].m_Rect;
|
||||
m_NodeFromID.Add(key, node);
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
result = Vector4.zero;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
public void Release(int key)
|
||||
{
|
||||
if (m_NodeFromID.TryGetValue(key, out Int16 node))
|
||||
{
|
||||
Debug.Assert(node >= 0 && node < m_Pool.m_Nodes.Length);
|
||||
m_Pool.m_Nodes[node].ReleaseAndMerge(m_Pool);
|
||||
m_NodeFromID.Remove(key);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
public void Release()
|
||||
{
|
||||
m_Pool.Clear();
|
||||
m_Root = m_Pool.AtlasNodeCreate(-1);
|
||||
m_Pool.m_Nodes[m_Root].m_Rect.Set(m_Width, m_Height, 0, 0);
|
||||
m_NodeFromID.Clear();
|
||||
}
|
||||
|
||||
public string DebugStringFromRoot(int depthMax = -1)
|
||||
{
|
||||
string res = "";
|
||||
DebugStringFromNode(ref res, m_Root, 0, depthMax);
|
||||
return res;
|
||||
}
|
||||
|
||||
private void DebugStringFromNode(ref string res, Int16 n, int depthCurrent = 0, int depthMax = -1)
|
||||
{
|
||||
res += "{[" + depthCurrent + "], isOccupied = " + (m_Pool.m_Nodes[n].IsOccupied() ? "true" : "false") + ", self = " + m_Pool.m_Nodes[n].m_Self + ", " + m_Pool.m_Nodes[n].m_Rect.x + "," + m_Pool.m_Nodes[n].m_Rect.y + ", " + m_Pool.m_Nodes[n].m_Rect.z + ", " + m_Pool.m_Nodes[n].m_Rect.w + "}\n";
|
||||
|
||||
if (depthMax == -1 || depthCurrent < depthMax)
|
||||
{
|
||||
if (m_Pool.m_Nodes[n].m_LeftChild >= 0)
|
||||
{
|
||||
DebugStringFromNode(ref res, m_Pool.m_Nodes[n].m_LeftChild, depthCurrent + 1, depthMax);
|
||||
}
|
||||
|
||||
if (m_Pool.m_Nodes[n].m_RightChild >= 0)
|
||||
{
|
||||
DebugStringFromNode(ref res, m_Pool.m_Nodes[n].m_RightChild, depthCurrent + 1, depthMax);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// A generic Atlas texture of 2D textures.
|
||||
/// An atlas texture is a texture collection that collects multiple sub-textures into a single big texture.
|
||||
/// Sub-texture allocation for Texture2DAtlasDynamic is dynamic.
|
||||
/// </summary>
|
||||
class Texture2DAtlasDynamic
|
||||
{
|
||||
private RTHandle m_AtlasTexture = null;
|
||||
private bool isAtlasTextureOwner = false;
|
||||
private int m_Width;
|
||||
private int m_Height;
|
||||
private GraphicsFormat m_Format;
|
||||
private AtlasAllocatorDynamic m_AtlasAllocator = null;
|
||||
private Dictionary<int, Vector4> m_AllocationCache;
|
||||
|
||||
/// <summary>
|
||||
/// Handle to the texture of the atlas.
|
||||
/// </summary>
|
||||
public RTHandle AtlasTexture
|
||||
{
|
||||
get
|
||||
{
|
||||
return m_AtlasTexture;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a new empty texture atlas.
|
||||
/// </summary>
|
||||
public Texture2DAtlasDynamic(int width, int height, int capacity, GraphicsFormat format)
|
||||
{
|
||||
m_Width = width;
|
||||
m_Height = height;
|
||||
m_Format = format;
|
||||
m_AtlasTexture = RTHandles.Alloc(
|
||||
m_Width,
|
||||
m_Height,
|
||||
1,
|
||||
DepthBits.None,
|
||||
m_Format,
|
||||
FilterMode.Point,
|
||||
TextureWrapMode.Clamp,
|
||||
TextureDimension.Tex2D,
|
||||
false,
|
||||
true,
|
||||
false,
|
||||
false,
|
||||
1,
|
||||
0,
|
||||
MSAASamples.None,
|
||||
false,
|
||||
false
|
||||
);
|
||||
isAtlasTextureOwner = true;
|
||||
|
||||
m_AtlasAllocator = new AtlasAllocatorDynamic(width, height, capacity);
|
||||
m_AllocationCache = new Dictionary<int, Vector4>(capacity);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a new empty texture atlas. Use external atlas texture.
|
||||
/// </summary>
|
||||
public Texture2DAtlasDynamic(int width, int height, int capacity, RTHandle atlasTexture)
|
||||
{
|
||||
m_Width = width;
|
||||
m_Height = height;
|
||||
m_Format = atlasTexture.rt.graphicsFormat;
|
||||
m_AtlasTexture = atlasTexture;
|
||||
isAtlasTextureOwner = false;
|
||||
|
||||
m_AtlasAllocator = new AtlasAllocatorDynamic(width, height, capacity);
|
||||
m_AllocationCache = new Dictionary<int, Vector4>(capacity);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Release atlas resources.
|
||||
/// </summary>
|
||||
public void Release()
|
||||
{
|
||||
ResetAllocator();
|
||||
if (isAtlasTextureOwner) { RTHandles.Release(m_AtlasTexture); }
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Clear atlas sub-texture allocations.
|
||||
/// </summary>
|
||||
public void ResetAllocator()
|
||||
{
|
||||
m_AtlasAllocator.Release();
|
||||
m_AllocationCache.Clear();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Add a texture into the atlas.
|
||||
/// </summary>
|
||||
public bool AddTexture(CommandBuffer cmd, out Vector4 scaleOffset, Texture texture)
|
||||
{
|
||||
int key = texture.GetInstanceID();
|
||||
if (!m_AllocationCache.TryGetValue(key, out scaleOffset))
|
||||
{
|
||||
int width = texture.width;
|
||||
int height = texture.height;
|
||||
if (m_AtlasAllocator.Allocate(out scaleOffset, key, width, height))
|
||||
{
|
||||
scaleOffset.Scale(new Vector4(1.0f / m_Width, 1.0f / m_Height, 1.0f / m_Width, 1.0f / m_Height));
|
||||
for (int mipLevel = 0; mipLevel < (texture as Texture2D).mipmapCount; mipLevel++)
|
||||
{
|
||||
cmd.SetRenderTarget(m_AtlasTexture, mipLevel);
|
||||
Blitter.BlitQuad(cmd, texture, new Vector4(1, 1, 0, 0), scaleOffset, mipLevel, false);
|
||||
}
|
||||
m_AllocationCache.Add(key, scaleOffset);
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Check if the atlas contains the texture.
|
||||
/// </summary>
|
||||
public bool IsCached(out Vector4 scaleOffset, int key)
|
||||
{
|
||||
return m_AllocationCache.TryGetValue(key, out scaleOffset);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Allocate space from the atlas.
|
||||
/// </summary>
|
||||
public bool EnsureTextureSlot(out bool isUploadNeeded, out Vector4 scaleOffset, int key, int width, int height)
|
||||
{
|
||||
isUploadNeeded = false;
|
||||
if (m_AllocationCache.TryGetValue(key, out scaleOffset)) { return true; }
|
||||
|
||||
// Debug.Log("EnsureTextureSlot Before = " + m_AtlasAllocator.DebugStringFromRoot());
|
||||
if (!m_AtlasAllocator.Allocate(out scaleOffset, key, width, height)) { return false; }
|
||||
// Debug.Log("EnsureTextureSlot After = " + m_AtlasAllocator.DebugStringFromRoot());
|
||||
|
||||
isUploadNeeded = true;
|
||||
scaleOffset.Scale(new Vector4(1.0f / m_Width, 1.0f / m_Height, 1.0f / m_Width, 1.0f / m_Height));
|
||||
m_AllocationCache.Add(key, scaleOffset);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Release allocated space from the atlas.
|
||||
/// </summary>
|
||||
public void ReleaseTextureSlot(int key)
|
||||
{
|
||||
m_AtlasAllocator.Release(key);
|
||||
m_AllocationCache.Remove(key);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
fileFormatVersion: 2
|
||||
guid: 2df7d94ca5e54f449984a88db558fa20
|
||||
MonoImporter:
|
||||
externalObjects: {}
|
||||
serializedVersion: 2
|
||||
defaultReferences: []
|
||||
executionOrder: 0
|
||||
icon: {instanceID: 0}
|
||||
userData:
|
||||
assetBundleName:
|
||||
assetBundleVariant:
|
||||
|
|
@ -0,0 +1,252 @@
|
|||
using UnityEngine.Experimental.Rendering;
|
||||
|
||||
namespace UnityEngine.Rendering
|
||||
{
|
||||
/// <summary>
|
||||
/// Utility class providing default textures compatible in any XR setup.
|
||||
/// </summary>
|
||||
public static class TextureXR
|
||||
{
|
||||
// Property set by XRSystem
|
||||
private static int m_MaxViews = 1;
|
||||
/// <summary>
|
||||
/// Maximum number of views handled by the XR system.
|
||||
/// </summary>
|
||||
public static int maxViews
|
||||
{
|
||||
set
|
||||
{
|
||||
m_MaxViews = value;
|
||||
}
|
||||
}
|
||||
|
||||
// Property accessed when allocating a render target
|
||||
/// <summary>
|
||||
/// Number of slices used by the XR system.
|
||||
/// </summary>
|
||||
public static int slices { get => m_MaxViews; }
|
||||
|
||||
// Must be in sync with shader define in TextureXR.hlsl
|
||||
/// <summary>
|
||||
/// Returns true if the XR system uses texture arrays.
|
||||
/// </summary>
|
||||
public static bool useTexArray
|
||||
{
|
||||
get
|
||||
{
|
||||
switch (SystemInfo.graphicsDeviceType)
|
||||
{
|
||||
case GraphicsDeviceType.Direct3D11:
|
||||
case GraphicsDeviceType.Direct3D12:
|
||||
case GraphicsDeviceType.PlayStation4:
|
||||
case GraphicsDeviceType.PlayStation5:
|
||||
case GraphicsDeviceType.PlayStation5NGGC:
|
||||
case GraphicsDeviceType.Vulkan:
|
||||
return true;
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Dimension of XR textures.
|
||||
/// </summary>
|
||||
public static TextureDimension dimension
|
||||
{
|
||||
get
|
||||
{
|
||||
// TEXTURE2D_X macros will now expand to TEXTURE2D or TEXTURE2D_ARRAY
|
||||
return useTexArray ? TextureDimension.Tex2DArray : TextureDimension.Tex2D;
|
||||
}
|
||||
}
|
||||
|
||||
// Need to keep both the Texture and the RTHandle in order to be able to track lifetime properly.
|
||||
static Texture m_BlackUIntTexture2DArray;
|
||||
static Texture m_BlackUIntTexture;
|
||||
static RTHandle m_BlackUIntTexture2DArrayRTH;
|
||||
static RTHandle m_BlackUIntTextureRTH;
|
||||
/// <summary>
|
||||
/// Default black unsigned integer texture.
|
||||
/// </summary>
|
||||
/// <returns>The default black unsigned integer texture.</returns>
|
||||
public static RTHandle GetBlackUIntTexture() { return useTexArray ? m_BlackUIntTexture2DArrayRTH : m_BlackUIntTextureRTH; }
|
||||
|
||||
static Texture2DArray m_ClearTexture2DArray;
|
||||
static Texture2D m_ClearTexture;
|
||||
static RTHandle m_ClearTexture2DArrayRTH;
|
||||
static RTHandle m_ClearTextureRTH;
|
||||
/// <summary>
|
||||
/// Default clear color (0, 0, 0, 1) texture.
|
||||
/// </summary>
|
||||
/// <returns>The default clear color texture.</returns>
|
||||
public static RTHandle GetClearTexture() { return useTexArray ? m_ClearTexture2DArrayRTH : m_ClearTextureRTH; }
|
||||
|
||||
static Texture2DArray m_MagentaTexture2DArray;
|
||||
static Texture2D m_MagentaTexture;
|
||||
static RTHandle m_MagentaTexture2DArrayRTH;
|
||||
static RTHandle m_MagentaTextureRTH;
|
||||
/// <summary>
|
||||
/// Default magenta texture.
|
||||
/// </summary>
|
||||
/// <returns>The default magenta texture.</returns>
|
||||
public static RTHandle GetMagentaTexture() { return useTexArray ? m_MagentaTexture2DArrayRTH : m_MagentaTextureRTH; }
|
||||
|
||||
static Texture2D m_BlackTexture;
|
||||
static Texture3D m_BlackTexture3D;
|
||||
static Texture2DArray m_BlackTexture2DArray;
|
||||
static RTHandle m_BlackTexture2DArrayRTH;
|
||||
static RTHandle m_BlackTextureRTH;
|
||||
static RTHandle m_BlackTexture3DRTH;
|
||||
/// <summary>
|
||||
/// Default black texture.
|
||||
/// </summary>
|
||||
/// <returns>The default black texture.</returns>
|
||||
public static RTHandle GetBlackTexture() { return useTexArray ? m_BlackTexture2DArrayRTH : m_BlackTextureRTH; }
|
||||
/// <summary>
|
||||
/// Default black texture array.
|
||||
/// </summary>
|
||||
/// <returns>The default black texture array.</returns>
|
||||
public static RTHandle GetBlackTextureArray() { return m_BlackTexture2DArrayRTH; }
|
||||
/// <summary>
|
||||
/// Default black texture 3D.
|
||||
/// </summary>
|
||||
/// <returns>The default black texture 3D.</returns>
|
||||
public static RTHandle GetBlackTexture3D() { return m_BlackTexture3DRTH; }
|
||||
|
||||
static Texture2DArray m_WhiteTexture2DArray;
|
||||
static RTHandle m_WhiteTexture2DArrayRTH;
|
||||
static RTHandle m_WhiteTextureRTH;
|
||||
/// <summary>
|
||||
/// Default white texture.
|
||||
/// </summary>
|
||||
/// <returns>The default white texture.</returns>
|
||||
public static RTHandle GetWhiteTexture() { return useTexArray ? m_WhiteTexture2DArrayRTH : m_WhiteTextureRTH; }
|
||||
|
||||
/// <summary>
|
||||
/// Initialize XR textures. Must be called at least once.
|
||||
/// </summary>
|
||||
/// <param name="cmd">Command Buffer used to initialize textures.</param>
|
||||
/// <param name="clearR32_UIntShader">Compute shader used to intitialize unsigned integer textures.</param>
|
||||
public static void Initialize(CommandBuffer cmd, ComputeShader clearR32_UIntShader)
|
||||
{
|
||||
if (m_BlackUIntTexture2DArray == null) // We assume that everything is invalid if one is invalid.
|
||||
{
|
||||
// Black UINT
|
||||
RTHandles.Release(m_BlackUIntTexture2DArrayRTH);
|
||||
m_BlackUIntTexture2DArray = CreateBlackUIntTextureArray(cmd, clearR32_UIntShader);
|
||||
m_BlackUIntTexture2DArrayRTH = RTHandles.Alloc(m_BlackUIntTexture2DArray);
|
||||
RTHandles.Release(m_BlackUIntTextureRTH);
|
||||
m_BlackUIntTexture = CreateBlackUintTexture(cmd, clearR32_UIntShader);
|
||||
m_BlackUIntTextureRTH = RTHandles.Alloc(m_BlackUIntTexture);
|
||||
|
||||
// Clear
|
||||
RTHandles.Release(m_ClearTextureRTH);
|
||||
m_ClearTexture = new Texture2D(1, 1, GraphicsFormat.R8G8B8A8_SRGB, TextureCreationFlags.None) { name = "Clear Texture" };
|
||||
m_ClearTexture.SetPixel(0, 0, Color.clear);
|
||||
m_ClearTexture.Apply();
|
||||
m_ClearTextureRTH = RTHandles.Alloc(m_ClearTexture);
|
||||
RTHandles.Release(m_ClearTexture2DArrayRTH);
|
||||
m_ClearTexture2DArray = CreateTexture2DArrayFromTexture2D(m_ClearTexture, "Clear Texture2DArray");
|
||||
m_ClearTexture2DArrayRTH = RTHandles.Alloc(m_ClearTexture2DArray);
|
||||
|
||||
// Magenta
|
||||
RTHandles.Release(m_MagentaTextureRTH);
|
||||
m_MagentaTexture = new Texture2D(1, 1, GraphicsFormat.R8G8B8A8_SRGB, TextureCreationFlags.None) { name = "Magenta Texture" };
|
||||
m_MagentaTexture.SetPixel(0, 0, Color.magenta);
|
||||
m_MagentaTexture.Apply();
|
||||
m_MagentaTextureRTH = RTHandles.Alloc(m_MagentaTexture);
|
||||
RTHandles.Release(m_MagentaTexture2DArrayRTH);
|
||||
m_MagentaTexture2DArray = CreateTexture2DArrayFromTexture2D(m_MagentaTexture, "Magenta Texture2DArray");
|
||||
m_MagentaTexture2DArrayRTH = RTHandles.Alloc(m_MagentaTexture2DArray);
|
||||
|
||||
// Black
|
||||
RTHandles.Release(m_BlackTextureRTH);
|
||||
m_BlackTexture = new Texture2D(1, 1, GraphicsFormat.R8G8B8A8_SRGB, TextureCreationFlags.None) { name = "Black Texture" };
|
||||
m_BlackTexture.SetPixel(0, 0, Color.black);
|
||||
m_BlackTexture.Apply();
|
||||
m_BlackTextureRTH = RTHandles.Alloc(m_BlackTexture);
|
||||
RTHandles.Release(m_BlackTexture2DArrayRTH);
|
||||
m_BlackTexture2DArray = CreateTexture2DArrayFromTexture2D(m_BlackTexture, "Black Texture2DArray");
|
||||
m_BlackTexture2DArrayRTH = RTHandles.Alloc(m_BlackTexture2DArray);
|
||||
RTHandles.Release(m_BlackTexture3DRTH);
|
||||
m_BlackTexture3D = CreateBlackTexture3D("Black Texture3D");
|
||||
m_BlackTexture3DRTH = RTHandles.Alloc(m_BlackTexture3D);
|
||||
|
||||
// White
|
||||
RTHandles.Release(m_WhiteTextureRTH);
|
||||
m_WhiteTextureRTH = RTHandles.Alloc(Texture2D.whiteTexture);
|
||||
RTHandles.Release(m_WhiteTexture2DArrayRTH);
|
||||
m_WhiteTexture2DArray = CreateTexture2DArrayFromTexture2D(Texture2D.whiteTexture, "White Texture2DArray");
|
||||
m_WhiteTexture2DArrayRTH = RTHandles.Alloc(m_WhiteTexture2DArray);
|
||||
}
|
||||
}
|
||||
|
||||
static Texture2DArray CreateTexture2DArrayFromTexture2D(Texture2D source, string name)
|
||||
{
|
||||
Texture2DArray texArray = new Texture2DArray(source.width, source.height, slices, source.format, false) { name = name };
|
||||
for (int i = 0; i < slices; ++i)
|
||||
Graphics.CopyTexture(source, 0, 0, texArray, i, 0);
|
||||
|
||||
return texArray;
|
||||
}
|
||||
|
||||
static Texture CreateBlackUIntTextureArray(CommandBuffer cmd, ComputeShader clearR32_UIntShader)
|
||||
{
|
||||
RenderTexture blackUIntTexture2DArray = new RenderTexture(1, 1, 0, GraphicsFormat.R32_UInt)
|
||||
{
|
||||
dimension = TextureDimension.Tex2DArray,
|
||||
volumeDepth = slices,
|
||||
useMipMap = false,
|
||||
autoGenerateMips = false,
|
||||
enableRandomWrite = true,
|
||||
name = "Black UInt Texture Array"
|
||||
};
|
||||
|
||||
blackUIntTexture2DArray.Create();
|
||||
|
||||
// Workaround because we currently can't create a Texture2DArray using an R32_UInt format
|
||||
// So we create a R32_UInt RenderTarget and clear it using a compute shader, because we can't
|
||||
// Clear this type of target on metal devices (output type nor compatible: float4 vs uint)
|
||||
int kernel = clearR32_UIntShader.FindKernel("ClearUIntTextureArray");
|
||||
cmd.SetComputeTextureParam(clearR32_UIntShader, kernel, "_TargetArray", blackUIntTexture2DArray);
|
||||
cmd.DispatchCompute(clearR32_UIntShader, kernel, 1, 1, slices);
|
||||
|
||||
return blackUIntTexture2DArray as Texture;
|
||||
}
|
||||
|
||||
static Texture CreateBlackUintTexture(CommandBuffer cmd, ComputeShader clearR32_UIntShader)
|
||||
{
|
||||
RenderTexture blackUIntTexture2D = new RenderTexture(1, 1, 0, GraphicsFormat.R32_UInt)
|
||||
{
|
||||
dimension = TextureDimension.Tex2D,
|
||||
volumeDepth = slices,
|
||||
useMipMap = false,
|
||||
autoGenerateMips = false,
|
||||
enableRandomWrite = true,
|
||||
name = "Black UInt Texture Array"
|
||||
};
|
||||
|
||||
blackUIntTexture2D.Create();
|
||||
|
||||
// Workaround because we currently can't create a Texture2DArray using an R32_UInt format
|
||||
// So we create a R32_UInt RenderTarget and clear it using a compute shader, because we can't
|
||||
// Clear this type of target on metal devices (output type nor compatible: float4 vs uint)
|
||||
int kernel = clearR32_UIntShader.FindKernel("ClearUIntTexture");
|
||||
cmd.SetComputeTextureParam(clearR32_UIntShader, kernel, "_Target", blackUIntTexture2D);
|
||||
cmd.DispatchCompute(clearR32_UIntShader, kernel, 1, 1, slices);
|
||||
|
||||
return blackUIntTexture2D as Texture;
|
||||
}
|
||||
|
||||
static Texture3D CreateBlackTexture3D(string name)
|
||||
{
|
||||
Texture3D texture3D = new Texture3D(width: 1, height: 1, depth: 1, GraphicsFormat.R8G8B8A8_SRGB, TextureCreationFlags.None);
|
||||
texture3D.name = name;
|
||||
texture3D.SetPixel(0, 0, 0, Color.black, 0);
|
||||
texture3D.Apply(updateMipmaps: false);
|
||||
return texture3D;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
fileFormatVersion: 2
|
||||
guid: 350bf58f26d861246982bc0e3ad67632
|
||||
MonoImporter:
|
||||
externalObjects: {}
|
||||
serializedVersion: 2
|
||||
defaultReferences: []
|
||||
executionOrder: 0
|
||||
icon: {instanceID: 0}
|
||||
userData:
|
||||
assetBundleName:
|
||||
assetBundleVariant:
|
||||
Loading…
Add table
Add a link
Reference in a new issue