using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Runtime.InteropServices;
using System.Threading;
using Unity.Burst;
using Unity.Mathematics;
using Unity.Jobs;
using Unity.Jobs.LowLevel.Unsafe;
using UnityEngine.Assertions;
namespace Unity.Collections.LowLevel.Unsafe
{
///
/// A bucket of key-value pairs. Used as the internal storage for hash maps.
///
/// Exposed publicly only for advanced use cases.
[BurstCompatible]
public unsafe struct UnsafeHashMapBucketData
{
internal UnsafeHashMapBucketData(byte* v, byte* k, byte* n, byte* b, int bcm)
{
values = v;
keys = k;
next = n;
buckets = b;
bucketCapacityMask = bcm;
}
///
/// The buffer of values.
///
/// The buffer of values.
public readonly byte* values;
///
/// The buffer of keys.
///
/// The buffer of keys.
public readonly byte* keys;
///
/// The next bucket in the chain.
///
/// The next bucket in the chain.
public readonly byte* next;
///
/// The first bucket in the chain.
///
/// The first bucket in the chain.
public readonly byte* buckets;
///
/// One less than the bucket capacity.
///
/// One less than the bucket capacity.
public readonly int bucketCapacityMask;
}
[StructLayout(LayoutKind.Explicit)]
[BurstCompatible]
internal unsafe struct UnsafeHashMapData
{
[FieldOffset(0)]
internal byte* values;
// 4-byte padding on 32-bit architectures here
[FieldOffset(8)]
internal byte* keys;
// 4-byte padding on 32-bit architectures here
[FieldOffset(16)]
internal byte* next;
// 4-byte padding on 32-bit architectures here
[FieldOffset(24)]
internal byte* buckets;
// 4-byte padding on 32-bit architectures here
[FieldOffset(32)]
internal int keyCapacity;
[FieldOffset(36)]
internal int bucketCapacityMask; // = bucket capacity - 1
[FieldOffset(40)]
internal int allocatedIndexLength;
[FieldOffset(JobsUtility.CacheLineSize < 64 ? 64 : JobsUtility.CacheLineSize)]
internal fixed int firstFreeTLS[JobsUtility.MaxJobThreadCount * IntsPerCacheLine];
// 64 is the cache line size on x86, arm usually has 32 - so it is possible to save some memory there
internal const int IntsPerCacheLine = JobsUtility.CacheLineSize / sizeof(int);
internal static int GetBucketSize(int capacity)
{
return capacity * 2;
}
internal static int GrowCapacity(int capacity)
{
if (capacity == 0)
{
return 1;
}
return capacity * 2;
}
[BurstCompatible(GenericTypeArguments = new [] { typeof(int), typeof(int) })]
internal static void AllocateHashMap(int length, int bucketLength, AllocatorManager.AllocatorHandle label,
out UnsafeHashMapData* outBuf)
where TKey : struct
where TValue : struct
{
CollectionHelper.CheckIsUnmanaged();
CollectionHelper.CheckIsUnmanaged();
UnsafeHashMapData* data = (UnsafeHashMapData*)Memory.Unmanaged.Allocate(sizeof(UnsafeHashMapData), UnsafeUtility.AlignOf(), label);
bucketLength = math.ceilpow2(bucketLength);
data->keyCapacity = length;
data->bucketCapacityMask = bucketLength - 1;
int keyOffset, nextOffset, bucketOffset;
int totalSize = CalculateDataSize(length, bucketLength, out keyOffset, out nextOffset, out bucketOffset);
data->values = (byte*)Memory.Unmanaged.Allocate(totalSize, JobsUtility.CacheLineSize, label);
data->keys = data->values + keyOffset;
data->next = data->values + nextOffset;
data->buckets = data->values + bucketOffset;
outBuf = data;
}
[BurstCompatible(GenericTypeArguments = new [] { typeof(int), typeof(int) })]
internal static void ReallocateHashMap(UnsafeHashMapData* data, int newCapacity, int newBucketCapacity, AllocatorManager.AllocatorHandle label)
where TKey : struct
where TValue : struct
{
newBucketCapacity = math.ceilpow2(newBucketCapacity);
if (data->keyCapacity == newCapacity && (data->bucketCapacityMask + 1) == newBucketCapacity)
{
return;
}
CheckHashMapReallocateDoesNotShrink(data, newCapacity);
int keyOffset, nextOffset, bucketOffset;
int totalSize = CalculateDataSize(newCapacity, newBucketCapacity, out keyOffset, out nextOffset, out bucketOffset);
byte* newData = (byte*)Memory.Unmanaged.Allocate(totalSize, JobsUtility.CacheLineSize, label);
byte* newKeys = newData + keyOffset;
byte* newNext = newData + nextOffset;
byte* newBuckets = newData + bucketOffset;
// The items are taken from a free-list and might not be tightly packed, copy all of the old capcity
UnsafeUtility.MemCpy(newData, data->values, data->keyCapacity * UnsafeUtility.SizeOf());
UnsafeUtility.MemCpy(newKeys, data->keys, data->keyCapacity * UnsafeUtility.SizeOf());
UnsafeUtility.MemCpy(newNext, data->next, data->keyCapacity * UnsafeUtility.SizeOf());
for (int emptyNext = data->keyCapacity; emptyNext < newCapacity; ++emptyNext)
{
((int*)newNext)[emptyNext] = -1;
}
// re-hash the buckets, first clear the new bucket list, then insert all values from the old list
for (int bucket = 0; bucket < newBucketCapacity; ++bucket)
{
((int*)newBuckets)[bucket] = -1;
}
for (int bucket = 0; bucket <= data->bucketCapacityMask; ++bucket)
{
int* buckets = (int*)data->buckets;
int* nextPtrs = (int*)newNext;
while (buckets[bucket] >= 0)
{
int curEntry = buckets[bucket];
buckets[bucket] = nextPtrs[curEntry];
int newBucket = UnsafeUtility.ReadArrayElement(data->keys, curEntry).GetHashCode() & (newBucketCapacity - 1);
nextPtrs[curEntry] = ((int*)newBuckets)[newBucket];
((int*)newBuckets)[newBucket] = curEntry;
}
}
Memory.Unmanaged.Free(data->values, label);
if (data->allocatedIndexLength > data->keyCapacity)
{
data->allocatedIndexLength = data->keyCapacity;
}
data->values = newData;
data->keys = newKeys;
data->next = newNext;
data->buckets = newBuckets;
data->keyCapacity = newCapacity;
data->bucketCapacityMask = newBucketCapacity - 1;
}
internal static void DeallocateHashMap(UnsafeHashMapData* data, AllocatorManager.AllocatorHandle allocator)
{
Memory.Unmanaged.Free(data->values, allocator);
Memory.Unmanaged.Free(data, allocator);
}
[BurstCompatible(GenericTypeArguments = new [] { typeof(int), typeof(int) })]
internal static int CalculateDataSize(int length, int bucketLength, out int keyOffset, out int nextOffset, out int bucketOffset)
where TKey : struct
where TValue : struct
{
var sizeOfTValue = UnsafeUtility.SizeOf();
var sizeOfTKey = UnsafeUtility.SizeOf();
var sizeOfInt = UnsafeUtility.SizeOf();
var valuesSize = CollectionHelper.Align(sizeOfTValue * length, JobsUtility.CacheLineSize);
var keysSize = CollectionHelper.Align(sizeOfTKey * length, JobsUtility.CacheLineSize);
var nextSize = CollectionHelper.Align(sizeOfInt * length, JobsUtility.CacheLineSize);
var bucketSize = CollectionHelper.Align(sizeOfInt * bucketLength, JobsUtility.CacheLineSize);
var totalSize = valuesSize + keysSize + nextSize + bucketSize;
keyOffset = 0 + valuesSize;
nextOffset = keyOffset + keysSize;
bucketOffset = nextOffset + nextSize;
return totalSize;
}
internal static bool IsEmpty(UnsafeHashMapData* data)
{
if (data->allocatedIndexLength <= 0)
{
return true;
}
var bucketArray = (int*)data->buckets;
var bucketNext = (int*)data->next;
var capacityMask = data->bucketCapacityMask;
for (int i = 0; i <= capacityMask; ++i)
{
int bucket = bucketArray[i];
if (bucket != -1)
{
return false;
}
}
return true;
}
internal static int GetCount(UnsafeHashMapData* data)
{
if (data->allocatedIndexLength <= 0)
{
return 0;
}
var bucketNext = (int*)data->next;
var freeListSize = 0;
for (int tls = 0; tls < JobsUtility.MaxJobThreadCount; ++tls)
{
for (var freeIdx = data->firstFreeTLS[tls * IntsPerCacheLine]
; freeIdx >= 0
; freeIdx = bucketNext[freeIdx]
)
{
++freeListSize;
}
}
return math.min(data->keyCapacity, data->allocatedIndexLength) - freeListSize;
}
internal static bool MoveNext(UnsafeHashMapData* data, ref int bucketIndex, ref int nextIndex, out int index)
{
var bucketArray = (int*)data->buckets;
var bucketNext = (int*)data->next;
var capacityMask = data->bucketCapacityMask;
if (nextIndex != -1)
{
index = nextIndex;
nextIndex = bucketNext[nextIndex];
return true;
}
for (int i = bucketIndex; i <= capacityMask; ++i)
{
var idx = bucketArray[i];
if (idx != -1)
{
index = idx;
bucketIndex = i + 1;
nextIndex = bucketNext[idx];
return true;
}
}
index = -1;
bucketIndex = capacityMask + 1;
nextIndex = -1;
return false;
}
[BurstCompatible(GenericTypeArguments = new [] { typeof(int) })]
internal static void GetKeyArray(UnsafeHashMapData* data, NativeArray result)
where TKey : struct
{
var bucketArray = (int*)data->buckets;
var bucketNext = (int*)data->next;
for (int i = 0, count = 0, max = result.Length; i <= data->bucketCapacityMask && count < max; ++i)
{
int bucket = bucketArray[i];
while (bucket != -1)
{
result[count++] = UnsafeUtility.ReadArrayElement(data->keys, bucket);
bucket = bucketNext[bucket];
}
}
}
[BurstCompatible(GenericTypeArguments = new [] { typeof(int) })]
internal static void GetValueArray(UnsafeHashMapData* data, NativeArray result)
where TValue : struct
{
var bucketArray = (int*)data->buckets;
var bucketNext = (int*)data->next;
for (int i = 0, count = 0, max = result.Length, capacityMask = data->bucketCapacityMask
; i <= capacityMask && count < max
; ++i
)
{
int bucket = bucketArray[i];
while (bucket != -1)
{
result[count++] = UnsafeUtility.ReadArrayElement(data->values, bucket);
bucket = bucketNext[bucket];
}
}
}
[BurstCompatible(GenericTypeArguments = new [] { typeof(int), typeof(int) })]
internal static void GetKeyValueArrays(UnsafeHashMapData* data, NativeKeyValueArrays result)
where TKey : struct
where TValue : struct
{
var bucketArray = (int*)data->buckets;
var bucketNext = (int*)data->next;
for (int i = 0, count = 0, max = result.Length, capacityMask = data->bucketCapacityMask
; i <= capacityMask && count < max
; ++i
)
{
int bucket = bucketArray[i];
while (bucket != -1)
{
result.Keys[count] = UnsafeUtility.ReadArrayElement(data->keys, bucket);
result.Values[count] = UnsafeUtility.ReadArrayElement(data->values, bucket);
count++;
bucket = bucketNext[bucket];
}
}
}
internal UnsafeHashMapBucketData GetBucketData()
{
return new UnsafeHashMapBucketData(values, keys, next, buckets, bucketCapacityMask);
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
static void CheckHashMapReallocateDoesNotShrink(UnsafeHashMapData* data, int newCapacity)
{
if (data->keyCapacity > newCapacity)
throw new Exception("Shrinking a hash map is not supported");
}
}
[NativeContainer]
[BurstCompatible]
internal unsafe struct UnsafeHashMapDataDispose
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeHashMapData* m_Buffer;
internal AllocatorManager.AllocatorHandle m_AllocatorLabel;
#if ENABLE_UNITY_COLLECTIONS_CHECKS
internal AtomicSafetyHandle m_Safety;
#endif
public void Dispose()
{
UnsafeHashMapData.DeallocateHashMap(m_Buffer, m_AllocatorLabel);
}
}
[BurstCompile]
internal unsafe struct UnsafeHashMapDataDisposeJob : IJob
{
internal UnsafeHashMapDataDispose Data;
public void Execute()
{
Data.Dispose();
}
}
[StructLayout(LayoutKind.Sequential)]
[BurstCompatible(GenericTypeArguments = new [] { typeof(int), typeof(int) })]
internal struct UnsafeHashMapBase
where TKey : struct, IEquatable
where TValue : struct
{
internal static unsafe void Clear(UnsafeHashMapData* data)
{
UnsafeUtility.MemSet(data->buckets, 0xff, (data->bucketCapacityMask + 1) * 4);
UnsafeUtility.MemSet(data->next, 0xff, (data->keyCapacity) * 4);
for (int tls = 0; tls < JobsUtility.MaxJobThreadCount; ++tls)
{
data->firstFreeTLS[tls * UnsafeHashMapData.IntsPerCacheLine] = -1;
}
data->allocatedIndexLength = 0;
}
internal static unsafe int AllocEntry(UnsafeHashMapData* data, int threadIndex)
{
int idx;
int* nextPtrs = (int*)data->next;
do
{
idx = data->firstFreeTLS[threadIndex * UnsafeHashMapData.IntsPerCacheLine];
// Check if this thread has a free entry. Negative value means there is nothing free.
if (idx < 0)
{
// Try to refill local cache. The local cache is a linked list of 16 free entries.
// Indicate to other threads that we are refilling the cache.
// -2 means refilling cache.
// -1 means nothing free on this thread.
Interlocked.Exchange(ref data->firstFreeTLS[threadIndex * UnsafeHashMapData.IntsPerCacheLine], -2);
// If it failed try to get one from the never-allocated array
if (data->allocatedIndexLength < data->keyCapacity)
{
idx = Interlocked.Add(ref data->allocatedIndexLength, 16) - 16;
if (idx < data->keyCapacity - 1)
{
int count = math.min(16, data->keyCapacity - idx);
// Set up a linked list of free entries.
for (int i = 1; i < count; ++i)
{
nextPtrs[idx + i] = idx + i + 1;
}
// Last entry points to null.
nextPtrs[idx + count - 1] = -1;
// The first entry is going to be allocated to someone so it also points to null.
nextPtrs[idx] = -1;
// Set the TLS first free to the head of the list, which is the one after the entry we are returning.
Interlocked.Exchange(ref data->firstFreeTLS[threadIndex * UnsafeHashMapData.IntsPerCacheLine], idx + 1);
return idx;
}
if (idx == data->keyCapacity - 1)
{
// We tried to allocate more entries for this thread but we've already hit the key capacity,
// so we are in fact out of space. Record that this thread has no more entries.
Interlocked.Exchange(ref data->firstFreeTLS[threadIndex * UnsafeHashMapData.IntsPerCacheLine], -1);
return idx;
}
}
// If we reach here, then we couldn't allocate more entries for this thread, so it's completely empty.
Interlocked.Exchange(ref data->firstFreeTLS[threadIndex * UnsafeHashMapData.IntsPerCacheLine], -1);
// Failed to get any, try to get one from another free list
bool again = true;
while (again)
{
again = false;
for (int other = (threadIndex + 1) % JobsUtility.MaxJobThreadCount
; other != threadIndex
; other = (other + 1) % JobsUtility.MaxJobThreadCount
)
{
// Attempt to grab a free entry from another thread and switch the other thread's free head
// atomically.
do
{
idx = data->firstFreeTLS[other * UnsafeHashMapData.IntsPerCacheLine];
if (idx < 0)
{
break;
}
}
while (Interlocked.CompareExchange(
ref data->firstFreeTLS[other * UnsafeHashMapData.IntsPerCacheLine]
, nextPtrs[idx]
, idx
) != idx
);
if (idx == -2)
{
// If the thread was refilling the cache, then try again.
again = true;
}
else if (idx >= 0)
{
// We succeeded in getting an entry from another thread so remove this entry from the
// linked list.
nextPtrs[idx] = -1;
return idx;
}
}
}
ThrowFull();
}
CheckOutOfCapacity(idx, data->keyCapacity);
}
while (Interlocked.CompareExchange(
ref data->firstFreeTLS[threadIndex * UnsafeHashMapData.IntsPerCacheLine]
, nextPtrs[idx]
, idx
) != idx
);
nextPtrs[idx] = -1;
return idx;
}
internal static unsafe void FreeEntry(UnsafeHashMapData* data, int idx, int threadIndex)
{
int* nextPtrs = (int*)data->next;
int next = -1;
do
{
next = data->firstFreeTLS[threadIndex * UnsafeHashMapData.IntsPerCacheLine];
nextPtrs[idx] = next;
}
while (Interlocked.CompareExchange(
ref data->firstFreeTLS[threadIndex * UnsafeHashMapData.IntsPerCacheLine]
, idx
, next
) != next
);
}
internal static unsafe bool TryAddAtomic(UnsafeHashMapData* data, TKey key, TValue item, int threadIndex)
{
TValue tempItem;
NativeMultiHashMapIterator tempIt;
if (TryGetFirstValueAtomic(data, key, out tempItem, out tempIt))
{
return false;
}
// Allocate an entry from the free list
int idx = AllocEntry(data, threadIndex);
// Write the new value to the entry
UnsafeUtility.WriteArrayElement(data->keys, idx, key);
UnsafeUtility.WriteArrayElement(data->values, idx, item);
int bucket = key.GetHashCode() & data->bucketCapacityMask;
// Add the index to the hash-map
int* buckets = (int*)data->buckets;
// Make the bucket's head idx. If the exchange returns something other than -1, then the bucket had
// a non-null head which means we need to do more checks...
if (Interlocked.CompareExchange(ref buckets[bucket], idx, -1) != -1)
{
int* nextPtrs = (int*)data->next;
int next = -1;
do
{
// Link up this entry with the rest of the bucket under the assumption that this key
// doesn't already exist in the bucket. This assumption could be wrong, which will be
// checked later.
next = buckets[bucket];
nextPtrs[idx] = next;
// If the key already exists then we should free the entry we took earlier.
if (TryGetFirstValueAtomic(data, key, out tempItem, out tempIt))
{
// Put back the entry in the free list if someone else added it while trying to add
FreeEntry(data, idx, threadIndex);
return false;
}
}
while (Interlocked.CompareExchange(ref buckets[bucket], idx, next) != next);
}
return true;
}
internal static unsafe void AddAtomicMulti(UnsafeHashMapData* data, TKey key, TValue item, int threadIndex)
{
// Allocate an entry from the free list
int idx = AllocEntry(data, threadIndex);
// Write the new value to the entry
UnsafeUtility.WriteArrayElement(data->keys, idx, key);
UnsafeUtility.WriteArrayElement(data->values, idx, item);
int bucket = key.GetHashCode() & data->bucketCapacityMask;
// Add the index to the hash-map
int* buckets = (int*)data->buckets;
int nextPtr;
int* nextPtrs = (int*)data->next;
do
{
nextPtr = buckets[bucket];
nextPtrs[idx] = nextPtr;
}
while (Interlocked.CompareExchange(ref buckets[bucket], idx, nextPtr) != nextPtr);
}
internal static unsafe bool TryAdd(UnsafeHashMapData* data, TKey key, TValue item, bool isMultiHashMap, AllocatorManager.AllocatorHandle allocation)
{
TValue tempItem;
NativeMultiHashMapIterator tempIt;
if (!isMultiHashMap && TryGetFirstValueAtomic(data, key, out tempItem, out tempIt))
{
return false;
}
// Allocate an entry from the free list
int idx;
int* nextPtrs;
if (data->allocatedIndexLength >= data->keyCapacity && data->firstFreeTLS[0] < 0)
{
for (int tls = 1; tls < JobsUtility.MaxJobThreadCount; ++tls)
{
if (data->firstFreeTLS[tls * UnsafeHashMapData.IntsPerCacheLine] >= 0)
{
idx = data->firstFreeTLS[tls * UnsafeHashMapData.IntsPerCacheLine];
nextPtrs = (int*)data->next;
data->firstFreeTLS[tls * UnsafeHashMapData.IntsPerCacheLine] = nextPtrs[idx];
nextPtrs[idx] = -1;
data->firstFreeTLS[0] = idx;
break;
}
}
if (data->firstFreeTLS[0] < 0)
{
int newCap = UnsafeHashMapData.GrowCapacity(data->keyCapacity);
UnsafeHashMapData.ReallocateHashMap(data, newCap, UnsafeHashMapData.GetBucketSize(newCap), allocation);
}
}
idx = data->firstFreeTLS[0];
if (idx >= 0)
{
data->firstFreeTLS[0] = ((int*)data->next)[idx];
}
else
{
idx = data->allocatedIndexLength++;
}
CheckIndexOutOfBounds(data, idx);
// Write the new value to the entry
UnsafeUtility.WriteArrayElement(data->keys, idx, key);
UnsafeUtility.WriteArrayElement(data->values, idx, item);
int bucket = key.GetHashCode() & data->bucketCapacityMask;
// Add the index to the hash-map
int* buckets = (int*)data->buckets;
nextPtrs = (int*)data->next;
nextPtrs[idx] = buckets[bucket];
buckets[bucket] = idx;
return true;
}
internal static unsafe int Remove(UnsafeHashMapData* data, TKey key, bool isMultiHashMap)
{
if (data->keyCapacity == 0)
{
return 0;
}
var removed = 0;
// First find the slot based on the hash
var buckets = (int*)data->buckets;
var nextPtrs = (int*)data->next;
var bucket = key.GetHashCode() & data->bucketCapacityMask;
var prevEntry = -1;
var entryIdx = buckets[bucket];
while (entryIdx >= 0 && entryIdx < data->keyCapacity)
{
if (UnsafeUtility.ReadArrayElement(data->keys, entryIdx).Equals(key))
{
++removed;
// Found matching element, remove it
if (prevEntry < 0)
{
buckets[bucket] = nextPtrs[entryIdx];
}
else
{
nextPtrs[prevEntry] = nextPtrs[entryIdx];
}
// And free the index
int nextIdx = nextPtrs[entryIdx];
nextPtrs[entryIdx] = data->firstFreeTLS[0];
data->firstFreeTLS[0] = entryIdx;
entryIdx = nextIdx;
// Can only be one hit in regular hashmaps, so return
if (!isMultiHashMap)
{
break;
}
}
else
{
prevEntry = entryIdx;
entryIdx = nextPtrs[entryIdx];
}
}
return removed;
}
internal static unsafe void Remove(UnsafeHashMapData* data, NativeMultiHashMapIterator it)
{
// First find the slot based on the hash
int* buckets = (int*)data->buckets;
int* nextPtrs = (int*)data->next;
int bucket = it.key.GetHashCode() & data->bucketCapacityMask;
int entryIdx = buckets[bucket];
if (entryIdx == it.EntryIndex)
{
buckets[bucket] = nextPtrs[entryIdx];
}
else
{
while (entryIdx >= 0 && nextPtrs[entryIdx] != it.EntryIndex)
{
entryIdx = nextPtrs[entryIdx];
}
if (entryIdx < 0)
{
ThrowInvalidIterator();
}
nextPtrs[entryIdx] = nextPtrs[it.EntryIndex];
}
// And free the index
nextPtrs[it.EntryIndex] = data->firstFreeTLS[0];
data->firstFreeTLS[0] = it.EntryIndex;
}
[BurstCompatible(GenericTypeArguments = new [] { typeof(int) })]
internal static unsafe void RemoveKeyValue(UnsafeHashMapData* data, TKey key, TValueEQ value)
where TValueEQ : struct, IEquatable
{
if (data->keyCapacity == 0)
{
return;
}
var buckets = (int*)data->buckets;
var keyCapacity = (uint)data->keyCapacity;
var prevNextPtr = buckets + (key.GetHashCode() & data->bucketCapacityMask);
var entryIdx = *prevNextPtr;
if ((uint)entryIdx >= keyCapacity)
{
return;
}
var nextPtrs = (int*)data->next;
var keys = data->keys;
var values = data->values;
var firstFreeTLS = data->firstFreeTLS;
do
{
if (UnsafeUtility.ReadArrayElement(keys, entryIdx).Equals(key)
&& UnsafeUtility.ReadArrayElement(values, entryIdx).Equals(value))
{
int nextIdx = nextPtrs[entryIdx];
nextPtrs[entryIdx] = firstFreeTLS[0];
firstFreeTLS[0] = entryIdx;
*prevNextPtr = entryIdx = nextIdx;
}
else
{
prevNextPtr = nextPtrs + entryIdx;
entryIdx = *prevNextPtr;
}
}
while ((uint)entryIdx < keyCapacity);
}
internal static unsafe bool TryGetFirstValueAtomic(UnsafeHashMapData* data, TKey key, out TValue item, out NativeMultiHashMapIterator it)
{
it.key = key;
if (data->allocatedIndexLength <= 0)
{
it.EntryIndex = it.NextEntryIndex = -1;
item = default;
return false;
}
// First find the slot based on the hash
int* buckets = (int*)data->buckets;
int bucket = key.GetHashCode() & data->bucketCapacityMask;
it.EntryIndex = it.NextEntryIndex = buckets[bucket];
return TryGetNextValueAtomic(data, out item, ref it);
}
internal static unsafe bool TryGetNextValueAtomic(UnsafeHashMapData* data, out TValue item, ref NativeMultiHashMapIterator it)
{
int entryIdx = it.NextEntryIndex;
it.NextEntryIndex = -1;
it.EntryIndex = -1;
item = default;
if (entryIdx < 0 || entryIdx >= data->keyCapacity)
{
return false;
}
int* nextPtrs = (int*)data->next;
while (!UnsafeUtility.ReadArrayElement(data->keys, entryIdx).Equals(it.key))
{
entryIdx = nextPtrs[entryIdx];
if (entryIdx < 0 || entryIdx >= data->keyCapacity)
{
return false;
}
}
it.NextEntryIndex = nextPtrs[entryIdx];
it.EntryIndex = entryIdx;
// Read the value
item = UnsafeUtility.ReadArrayElement(data->values, entryIdx);
return true;
}
internal static unsafe bool SetValue(UnsafeHashMapData* data, ref NativeMultiHashMapIterator it, ref TValue item)
{
int entryIdx = it.EntryIndex;
if (entryIdx < 0 || entryIdx >= data->keyCapacity)
{
return false;
}
UnsafeUtility.WriteArrayElement(data->values, entryIdx, item);
return true;
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
static void CheckOutOfCapacity(int idx, int keyCapacity)
{
if (idx >= keyCapacity)
{
throw new InvalidOperationException(string.Format("nextPtr idx {0} beyond capacity {1}", idx, keyCapacity));
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
static unsafe void CheckIndexOutOfBounds(UnsafeHashMapData* data, int idx)
{
if (idx < 0 || idx >= data->keyCapacity)
throw new InvalidOperationException("Internal HashMap error");
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
static void ThrowFull()
{
throw new InvalidOperationException("HashMap is full");
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
static void ThrowInvalidIterator()
{
throw new InvalidOperationException("Invalid iterator passed to HashMap remove");
}
}
///
/// A key-value pair.
///
/// Used for enumerators.
/// The type of the keys.
/// The type of the values.
[DebuggerDisplay("Key = {Key}, Value = {Value}")]
[BurstCompatible(GenericTypeArguments = new[] {typeof(int), typeof(int)})]
public unsafe struct KeyValue
where TKey : struct, IEquatable
where TValue : struct
{
internal UnsafeHashMapData* m_Buffer;
internal int m_Index;
internal int m_Next;
///
/// An invalid KeyValue.
///
/// In a hash map enumerator's initial state, its value is Null.
public static KeyValue Null => new KeyValue{m_Index = -1};
///
/// The key.
///
/// The key. If this KeyValue is Null, returns the default of TKey.
public TKey Key
{
get
{
if (m_Index != -1)
{
return UnsafeUtility.ReadArrayElement(m_Buffer->keys, m_Index);
}
return default;
}
}
///
/// Value of key/value pair.
///
public ref TValue Value
{
get
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
if (m_Index == -1)
throw new ArgumentException("must be valid");
#endif
return ref UnsafeUtility.AsRef(m_Buffer->values + UnsafeUtility.SizeOf() * m_Index);
}
}
///
/// Gets the key and the value.
///
/// Outputs the key. If this KeyValue is Null, outputs the default of TKey.
/// Outputs the value. If this KeyValue is Null, outputs the default of TValue.
/// True if the key-value pair is valid.
public bool GetKeyValue(out TKey key, out TValue value)
{
if (m_Index != -1)
{
key = UnsafeUtility.ReadArrayElement(m_Buffer->keys, m_Index);
value = UnsafeUtility.ReadArrayElement(m_Buffer->values, m_Index);
return true;
}
key = default;
value = default;
return false;
}
}
internal unsafe struct UnsafeHashMapDataEnumerator
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeHashMapData* m_Buffer;
internal int m_Index;
internal int m_BucketIndex;
internal int m_NextIndex;
internal unsafe UnsafeHashMapDataEnumerator(UnsafeHashMapData* data)
{
m_Buffer = data;
m_Index = -1;
m_BucketIndex = 0;
m_NextIndex = -1;
}
internal bool MoveNext()
{
return UnsafeHashMapData.MoveNext(m_Buffer, ref m_BucketIndex, ref m_NextIndex, out m_Index);
}
internal void Reset()
{
m_Index = -1;
m_BucketIndex = 0;
m_NextIndex = -1;
}
internal KeyValue GetCurrent()
where TKey : struct, IEquatable
where TValue : struct
{
return new KeyValue { m_Buffer = m_Buffer, m_Index = m_Index };
}
internal TKey GetCurrentKey()
where TKey : struct, IEquatable
{
if (m_Index != -1)
{
return UnsafeUtility.ReadArrayElement(m_Buffer->keys, m_Index);
}
return default;
}
}
///
/// An unordered, expandable associative array.
///
/// The type of the keys.
/// The type of the values.
[StructLayout(LayoutKind.Sequential)]
[DebuggerDisplay("Count = {Count()}, Capacity = {Capacity}, IsCreated = {IsCreated}, IsEmpty = {IsEmpty}")]
[DebuggerTypeProxy(typeof(UnsafeHashMapDebuggerTypeProxy<,>))]
[BurstCompatible(GenericTypeArguments = new [] { typeof(int), typeof(int) })]
public unsafe struct UnsafeHashMap
: INativeDisposable
, IEnumerable> // Used by collection initializers.
where TKey : struct, IEquatable
where TValue : struct
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeHashMapData* m_Buffer;
internal AllocatorManager.AllocatorHandle m_AllocatorLabel;
///
/// Initializes and returns an instance of UnsafeHashMap.
///
/// The number of key-value pairs that should fit in the initial allocation.
/// The allocator to use.
public UnsafeHashMap(int capacity, AllocatorManager.AllocatorHandle allocator)
{
CollectionHelper.CheckIsUnmanaged();
CollectionHelper.CheckIsUnmanaged();
m_AllocatorLabel = allocator;
// Bucket size if bigger to reduce collisions
UnsafeHashMapData.AllocateHashMap(capacity, capacity * 2, allocator, out m_Buffer);
Clear();
}
///
/// Whether this hash map is empty.
///
/// True if this hash map is empty or the hash map has not been constructed.
public bool IsEmpty => !IsCreated || UnsafeHashMapData.IsEmpty(m_Buffer);
///
/// The current number of key-value pairs in this hash map.
///
/// The current number of key-value pairs in this hash map.
public int Count() => UnsafeHashMapData.GetCount(m_Buffer);
///
/// The number of key-value pairs that fit in the current allocation.
///
/// The number of key-value pairs that fit in the current allocation.
/// A new capacity. Must be larger than the current capacity.
/// Thrown if `value` is less than the current capacity.
public int Capacity
{
get
{
UnsafeHashMapData* data = m_Buffer;
return data->keyCapacity;
}
set
{
UnsafeHashMapData* data = m_Buffer;
UnsafeHashMapData.ReallocateHashMap(data, value, UnsafeHashMapData.GetBucketSize(value), m_AllocatorLabel);
}
}
///
/// Removes all key-value pairs.
///
/// Does not change the capacity.
public void Clear()
{
UnsafeHashMapBase.Clear(m_Buffer);
}
///
/// Adds a new key-value pair.
///
/// If the key is already present, this method returns false without modifying the hash map.
/// The key to add.
/// The value to add.
/// True if the key-value pair was added.
public bool TryAdd(TKey key, TValue item)
{
return UnsafeHashMapBase.TryAdd(m_Buffer, key, item, false, m_AllocatorLabel);
}
///
/// Adds a new key-value pair.
///
/// If the key is already present, this method throws without modifying the hash map.
/// The key to add.
/// The value to add.
/// Thrown if the key was already present.
public void Add(TKey key, TValue item)
{
TryAdd(key, item);
}
///
/// Removes a key-value pair.
///
/// The key to remove.
/// True if a key-value pair was removed.
public bool Remove(TKey key)
{
return UnsafeHashMapBase.Remove(m_Buffer, key, false) != 0;
}
///
/// Returns the value associated with a key.
///
/// The key to look up.
/// Outputs the value associated with the key. Outputs default if the key was not present.
/// True if the key was present.
public bool TryGetValue(TKey key, out TValue item)
{
NativeMultiHashMapIterator tempIt;
return UnsafeHashMapBase.TryGetFirstValueAtomic(m_Buffer, key, out item, out tempIt);
}
///
/// Returns true if a given key is present in this hash map.
///
/// The key to look up.
/// True if the key was present.
public bool ContainsKey(TKey key)
{
return UnsafeHashMapBase.TryGetFirstValueAtomic(m_Buffer, key, out var tempValue, out var tempIt);
}
///
/// Gets and sets values by key.
///
/// Getting a key that is not present will throw. Setting a key that is not already present will add the key.
/// The key to look up.
/// The value associated with the key.
/// For getting, thrown if the key was not present.
public TValue this[TKey key]
{
get
{
TValue res;
TryGetValue(key, out res);
return res;
}
set
{
if (UnsafeHashMapBase.TryGetFirstValueAtomic(m_Buffer, key, out var item, out var iterator))
{
UnsafeHashMapBase.SetValue(m_Buffer, ref iterator, ref value);
}
else
{
UnsafeHashMapBase.TryAdd(m_Buffer, key, value, false, m_AllocatorLabel);
}
}
}
///
/// Whether this hash map has been allocated (and not yet deallocated).
///
/// True if this hash map has been allocated (and not yet deallocated).
public bool IsCreated => m_Buffer != null;
///
/// Releases all resources (memory).
///
public void Dispose()
{
UnsafeHashMapData.DeallocateHashMap(m_Buffer, m_AllocatorLabel);
m_Buffer = null;
}
///
/// Creates and schedules a job that will dispose this hash map.
///
/// A job handle. The newly scheduled job will depend upon this handle.
/// The handle of a new job that will dispose this hash map.
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
public JobHandle Dispose(JobHandle inputDeps)
{
var jobHandle = new UnsafeHashMapDisposeJob { Data = m_Buffer, Allocator = m_AllocatorLabel }.Schedule(inputDeps);
m_Buffer = null;
return jobHandle;
}
///
/// Returns an array with a copy of all this hash map's keys (in no particular order).
///
/// The allocator to use.
/// An array with a copy of all this hash map's keys (in no particular order).
public NativeArray GetKeyArray(AllocatorManager.AllocatorHandle allocator)
{
var result = CollectionHelper.CreateNativeArray(UnsafeHashMapData.GetCount(m_Buffer), allocator, NativeArrayOptions.UninitializedMemory);
UnsafeHashMapData.GetKeyArray(m_Buffer, result);
return result;
}
///
/// Returns an array with a copy of all this hash map's values (in no particular order).
///
/// The allocator to use.
/// An array with a copy of all this hash map's values (in no particular order).
public NativeArray GetValueArray(AllocatorManager.AllocatorHandle allocator)
{
var result = CollectionHelper.CreateNativeArray(UnsafeHashMapData.GetCount(m_Buffer), allocator, NativeArrayOptions.UninitializedMemory);
UnsafeHashMapData.GetValueArray(m_Buffer, result);
return result;
}
///
/// Returns a NativeKeyValueArrays with a copy of all this hash map's keys and values.
///
/// The key-value pairs are copied in no particular order. For all `i`, `Values[i]` will be the value associated with `Keys[i]`.
/// The allocator to use.
/// A NativeKeyValueArrays with a copy of all this hash map's keys and values.
public NativeKeyValueArrays GetKeyValueArrays(AllocatorManager.AllocatorHandle allocator)
{
var result = new NativeKeyValueArrays(UnsafeHashMapData.GetCount(m_Buffer), allocator, NativeArrayOptions.UninitializedMemory);
UnsafeHashMapData.GetKeyValueArrays(m_Buffer, result);
return result;
}
///
/// Returns a parallel writer for this hash map.
///
/// A parallel writer for this hash map.
public ParallelWriter AsParallelWriter()
{
ParallelWriter writer;
writer.m_ThreadIndex = 0;
writer.m_Buffer = m_Buffer;
return writer;
}
///
/// A parallel writer for a NativeHashMap.
///
///
/// Use to create a parallel writer for a NativeHashMap.
///
[NativeContainerIsAtomicWriteOnly]
[BurstCompatible(GenericTypeArguments = new [] { typeof(int), typeof(int) })]
public unsafe struct ParallelWriter
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeHashMapData* m_Buffer;
[NativeSetThreadIndex]
internal int m_ThreadIndex;
///
/// The number of key-value pairs that fit in the current allocation.
///
/// The number of key-value pairs that fit in the current allocation.
public int Capacity
{
get
{
UnsafeHashMapData* data = m_Buffer;
return data->keyCapacity;
}
}
///
/// Adds a new key-value pair.
///
/// If the key is already present, this method returns false without modifying the hash map.
/// The key to add.
/// The value to add.
/// True if the key-value pair was added.
public bool TryAdd(TKey key, TValue item)
{
Assert.IsTrue(m_ThreadIndex >= 0);
return UnsafeHashMapBase.TryAddAtomic(m_Buffer, key, item, m_ThreadIndex);
}
}
///
/// Returns an enumerator over the key-value pairs of this hash map.
///
/// An enumerator over the key-value pairs of this hash map.
public Enumerator GetEnumerator()
{
return new Enumerator { m_Enumerator = new UnsafeHashMapDataEnumerator(m_Buffer) };
}
///
/// This method is not implemented. Use instead.
///
/// Throws NotImplementedException.
/// Method is not implemented.
IEnumerator> IEnumerable>.GetEnumerator()
{
throw new NotImplementedException();
}
///
/// This method is not implemented. Use instead.
///
/// Throws NotImplementedException.
/// Method is not implemented.
IEnumerator IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
///
/// An enumerator over the key-value pairs of a hash map.
///
///
/// In an enumerator's initial state, is not valid to read.
/// From this state, the first call advances the enumerator to the first key-value pair.
///
public struct Enumerator : IEnumerator>
{
internal UnsafeHashMapDataEnumerator m_Enumerator;
///
/// Does nothing.
///
public void Dispose() { }
///
/// Advances the enumerator to the next key-value pair.
///
/// True if is valid to read after the call.
public bool MoveNext() => m_Enumerator.MoveNext();
///
/// Resets the enumerator to its initial state.
///
public void Reset() => m_Enumerator.Reset();
///
/// The current key-value pair.
///
/// The current key-value pair.
public KeyValue Current => m_Enumerator.GetCurrent();
object IEnumerator.Current => Current;
}
}
[BurstCompile]
internal unsafe struct UnsafeHashMapDisposeJob : IJob
{
[NativeDisableUnsafePtrRestriction]
public UnsafeHashMapData* Data;
public AllocatorManager.AllocatorHandle Allocator;
public void Execute()
{
UnsafeHashMapData.DeallocateHashMap(Data, Allocator);
}
}
sealed internal class UnsafeHashMapDebuggerTypeProxy
where TKey : struct, IEquatable
where TValue : struct
{
#if !NET_DOTS
UnsafeHashMap m_Target;
public UnsafeHashMapDebuggerTypeProxy(UnsafeHashMap target)
{
m_Target = target;
}
public List> Items
{
get
{
var result = new List>();
using (var kva = m_Target.GetKeyValueArrays(Allocator.Temp))
{
for (var i = 0; i < kva.Length; ++i)
{
result.Add(new Pair(kva.Keys[i], kva.Values[i]));
}
}
return result;
}
}
#endif
}
///
/// For internal use only.
///
public unsafe struct UntypedUnsafeHashMap
{
#pragma warning disable 169
[NativeDisableUnsafePtrRestriction]
UnsafeHashMapData* m_Buffer;
AllocatorManager.AllocatorHandle m_AllocatorLabel;
#pragma warning restore 169
}
}