citra/src/core/hle/kernel/process.cpp
Weiyi Wang 2067946f59
Kernel: reimplement memory management on physical FCRAM (#4392)
* Kernel: reimplement memory management on physical FCRAM

* Kernel/Process: Unmap does not care the source memory permission

What game usually does is after mapping the memory, they reprotect the source memory as no permission to avoid modification there

* Kernel/SharedMemory: zero initialize new-allocated memory

* Process/Thread: zero new TLS entry

* Kernel: fix a bug where code segments memory usage are accumulated twice

It is added to both misc and heap (done inside HeapAlloc), which results a doubled number reported by svcGetProcessInfo. While we are on it, we just merge the three number misc, heap and linear heap usage together, as there is no where they are distinguished.

Question: is TLS page also added to this number?

* Kernel/SharedMemory: add more object info on mapping error

* Process: lower log level; SharedMemory: store phys offset

* VMManager: add helper function to retrieve backing block list for a range
2018-11-06 15:00:47 -05:00

375 lines
14 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/logging/log.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
namespace Kernel {
SharedPtr<CodeSet> KernelSystem::CreateCodeSet(std::string name, u64 program_id) {
SharedPtr<CodeSet> codeset(new CodeSet(*this));
codeset->name = std::move(name);
codeset->program_id = program_id;
return codeset;
}
CodeSet::CodeSet(KernelSystem& kernel) : Object(kernel) {}
CodeSet::~CodeSet() {}
SharedPtr<Process> KernelSystem::CreateProcess(SharedPtr<CodeSet> code_set) {
SharedPtr<Process> process(new Process(*this));
process->codeset = std::move(code_set);
process->flags.raw = 0;
process->flags.memory_region.Assign(MemoryRegion::APPLICATION);
process->status = ProcessStatus::Created;
process->process_id = ++next_process_id;
process_list.push_back(process);
return process;
}
void Process::ParseKernelCaps(const u32* kernel_caps, std::size_t len) {
for (std::size_t i = 0; i < len; ++i) {
u32 descriptor = kernel_caps[i];
u32 type = descriptor >> 20;
if (descriptor == 0xFFFFFFFF) {
// Unused descriptor entry
continue;
} else if ((type & 0xF00) == 0xE00) { // 0x0FFF
// Allowed interrupts list
LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
} else if ((type & 0xF80) == 0xF00) { // 0x07FF
// Allowed syscalls mask
unsigned int index = ((descriptor >> 24) & 7) * 24;
u32 bits = descriptor & 0xFFFFFF;
while (bits && index < svc_access_mask.size()) {
svc_access_mask.set(index, bits & 1);
++index;
bits >>= 1;
}
} else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
// Handle table size
handle_table_size = descriptor & 0x3FF;
} else if ((type & 0xFF8) == 0xFF0) { // 0x007F
// Misc. flags
flags.raw = descriptor & 0xFFFF;
} else if ((type & 0xFFE) == 0xFF8) { // 0x001F
// Mapped memory range
if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
continue;
}
u32 end_desc = kernel_caps[i + 1];
++i; // Skip over the second descriptor on the next iteration
AddressMapping mapping;
mapping.address = descriptor << 12;
VAddr end_address = end_desc << 12;
if (mapping.address < end_address) {
mapping.size = end_address - mapping.address;
} else {
mapping.size = 0;
}
mapping.read_only = (descriptor & (1 << 20)) != 0;
mapping.unk_flag = (end_desc & (1 << 20)) != 0;
address_mappings.push_back(mapping);
} else if ((type & 0xFFF) == 0xFFE) { // 0x000F
// Mapped memory page
AddressMapping mapping;
mapping.address = descriptor << 12;
mapping.size = Memory::PAGE_SIZE;
mapping.read_only = false;
mapping.unk_flag = false;
address_mappings.push_back(mapping);
} else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
// Kernel version
kernel_version = descriptor & 0xFFFF;
int minor = kernel_version & 0xFF;
int major = (kernel_version >> 8) & 0xFF;
LOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor);
} else {
LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor);
}
}
}
void Process::Run(s32 main_thread_priority, u32 stack_size) {
memory_region = kernel.GetMemoryRegion(flags.memory_region);
auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
MemoryState memory_state) {
HeapAllocate(segment.addr, segment.size, permissions, memory_state, true);
Memory::WriteBlock(*this, segment.addr, codeset->memory->data() + segment.offset,
segment.size);
};
// Map CodeSet segments
MapSegment(codeset->CodeSegment(), VMAPermission::ReadExecute, MemoryState::Code);
MapSegment(codeset->RODataSegment(), VMAPermission::Read, MemoryState::Code);
MapSegment(codeset->DataSegment(), VMAPermission::ReadWrite, MemoryState::Private);
// Allocate and map stack
HeapAllocate(Memory::HEAP_VADDR_END - stack_size, stack_size, VMAPermission::ReadWrite,
MemoryState::Locked, true);
// Map special address mappings
kernel.MapSharedPages(vm_manager);
for (const auto& mapping : address_mappings) {
HandleSpecialMapping(vm_manager, mapping);
}
status = ProcessStatus::Running;
vm_manager.LogLayout(Log::Level::Debug);
Kernel::SetupMainThread(kernel, codeset->entrypoint, main_thread_priority, this);
}
VAddr Process::GetLinearHeapAreaAddress() const {
// Starting from system version 8.0.0 a new linear heap layout is supported to allow usage of
// the extra RAM in the n3DS.
return kernel_version < 0x22C ? Memory::LINEAR_HEAP_VADDR : Memory::NEW_LINEAR_HEAP_VADDR;
}
VAddr Process::GetLinearHeapBase() const {
return GetLinearHeapAreaAddress() + memory_region->base;
}
VAddr Process::GetLinearHeapLimit() const {
return GetLinearHeapBase() + memory_region->size;
}
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms,
MemoryState memory_state, bool skip_range_check) {
LOG_DEBUG(Kernel, "Allocate heap target={:08X}, size={:08X}", target, size);
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
target + size < target) {
if (!skip_range_check) {
LOG_ERROR(Kernel, "Invalid heap address");
return ERR_INVALID_ADDRESS;
}
}
auto vma = vm_manager.FindVMA(target);
if (vma->second.type != VMAType::Free || vma->second.base + vma->second.size < target + size) {
LOG_ERROR(Kernel, "Trying to allocate already allocated memory");
return ERR_INVALID_ADDRESS_STATE;
}
auto allocated_fcram = memory_region->HeapAllocate(size);
if (allocated_fcram.empty()) {
LOG_ERROR(Kernel, "Not enough space");
return ERR_OUT_OF_HEAP_MEMORY;
}
// Maps heap block by block
VAddr interval_target = target;
for (const auto& interval : allocated_fcram) {
u32 interval_size = interval.upper() - interval.lower();
LOG_DEBUG(Kernel, "Allocated FCRAM region lower={:08X}, upper={:08X}", interval.lower(),
interval.upper());
std::fill(Memory::fcram.begin() + interval.lower(),
Memory::fcram.begin() + interval.upper(), 0);
auto vma = vm_manager.MapBackingMemory(
interval_target, Memory::fcram.data() + interval.lower(), interval_size, memory_state);
ASSERT(vma.Succeeded());
vm_manager.Reprotect(vma.Unwrap(), perms);
interval_target += interval_size;
}
memory_used += size;
resource_limit->current_commit += size;
return MakeResult<VAddr>(target);
}
ResultCode Process::HeapFree(VAddr target, u32 size) {
LOG_DEBUG(Kernel, "Free heap target={:08X}, size={:08X}", target, size);
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
target + size < target) {
LOG_ERROR(Kernel, "Invalid heap address");
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
return RESULT_SUCCESS;
}
// Free heaps block by block
CASCADE_RESULT(auto backing_blocks, vm_manager.GetBackingBlocksForRange(target, size));
for (const auto [backing_memory, block_size] : backing_blocks) {
memory_region->Free(Memory::GetFCRAMOffset(backing_memory), block_size);
}
ResultCode result = vm_manager.UnmapRange(target, size);
ASSERT(result.IsSuccess());
memory_used -= size;
resource_limit->current_commit -= size;
return RESULT_SUCCESS;
}
ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
LOG_DEBUG(Kernel, "Allocate linear heap target={:08X}, size={:08X}", target, size);
u32 physical_offset;
if (target == 0) {
auto offset = memory_region->LinearAllocate(size);
if (!offset) {
LOG_ERROR(Kernel, "Not enough space");
return ERR_OUT_OF_HEAP_MEMORY;
}
physical_offset = *offset;
target = physical_offset + GetLinearHeapAreaAddress();
} else {
if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
target + size < target) {
LOG_ERROR(Kernel, "Invalid linear heap address");
return ERR_INVALID_ADDRESS;
}
// Kernel would crash/return error when target doesn't meet some requirement.
// It seems that target is required to follow immediately after the allocated linear heap,
// or cover the entire hole if there is any.
// Right now we just ignore these checks because they are still unclear. Further more,
// games and homebrew only ever seem to pass target = 0 here (which lets the kernel decide
// the address), so this not important.
physical_offset = target - GetLinearHeapAreaAddress(); // relative to FCRAM
if (!memory_region->LinearAllocate(physical_offset, size)) {
LOG_ERROR(Kernel, "Trying to allocate already allocated memory");
return ERR_INVALID_ADDRESS_STATE;
}
}
u8* backing_memory = Memory::fcram.data() + physical_offset;
std::fill(backing_memory, backing_memory + size, 0);
auto vma = vm_manager.MapBackingMemory(target, backing_memory, size, MemoryState::Continuous);
ASSERT(vma.Succeeded());
vm_manager.Reprotect(vma.Unwrap(), perms);
memory_used += size;
resource_limit->current_commit += size;
LOG_DEBUG(Kernel, "Allocated at target={:08X}", target);
return MakeResult<VAddr>(target);
}
ResultCode Process::LinearFree(VAddr target, u32 size) {
LOG_DEBUG(Kernel, "Free linear heap target={:08X}, size={:08X}", target, size);
if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
target + size < target) {
LOG_ERROR(Kernel, "Invalid linear heap address");
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
return RESULT_SUCCESS;
}
ResultCode result = vm_manager.UnmapRange(target, size);
if (result.IsError()) {
LOG_ERROR(Kernel, "Trying to free already freed memory");
return result;
}
memory_used -= size;
resource_limit->current_commit -= size;
u32 physical_offset = target - GetLinearHeapAreaAddress(); // relative to FCRAM
memory_region->Free(physical_offset, size);
return RESULT_SUCCESS;
}
ResultCode Process::Map(VAddr target, VAddr source, u32 size, VMAPermission perms) {
LOG_DEBUG(Kernel, "Map memory target={:08X}, source={:08X}, size={:08X}, perms={:08X}", target,
source, size, static_cast<u8>(perms));
if (source < Memory::HEAP_VADDR || source + size > Memory::HEAP_VADDR_END ||
source + size < source) {
LOG_ERROR(Kernel, "Invalid source address");
return ERR_INVALID_ADDRESS;
}
// TODO(wwylele): check target address range. Is it also restricted to heap region?
auto vma = vm_manager.FindVMA(target);
if (vma->second.type != VMAType::Free || vma->second.base + vma->second.size < target + size) {
LOG_ERROR(Kernel, "Trying to map to already allocated memory");
return ERR_INVALID_ADDRESS_STATE;
}
// Mark source region as Aliased
CASCADE_CODE(vm_manager.ChangeMemoryState(source, size, MemoryState::Private,
VMAPermission::ReadWrite, MemoryState::Aliased,
VMAPermission::ReadWrite));
CASCADE_RESULT(auto backing_blocks, vm_manager.GetBackingBlocksForRange(source, size));
VAddr interval_target = target;
for (const auto [backing_memory, block_size] : backing_blocks) {
auto target_vma = vm_manager.MapBackingMemory(interval_target, backing_memory, block_size,
MemoryState::Alias);
interval_target += block_size;
}
return RESULT_SUCCESS;
}
ResultCode Process::Unmap(VAddr target, VAddr source, u32 size, VMAPermission perms) {
LOG_DEBUG(Kernel, "Unmap memory target={:08X}, source={:08X}, size={:08X}, perms={:08X}",
target, source, size, static_cast<u8>(perms));
if (source < Memory::HEAP_VADDR || source + size > Memory::HEAP_VADDR_END ||
source + size < source) {
LOG_ERROR(Kernel, "Invalid source address");
return ERR_INVALID_ADDRESS;
}
// TODO(wwylele): check target address range. Is it also restricted to heap region?
// TODO(wwylele): check that the source and the target are actually a pair created by Map
// Should return error 0xD8E007F5 in this case
CASCADE_CODE(vm_manager.UnmapRange(target, size));
// Change back source region state. Note that the permission is reprotected according to param
CASCADE_CODE(vm_manager.ChangeMemoryState(source, size, MemoryState::Aliased,
VMAPermission::None, MemoryState::Private, perms));
return RESULT_SUCCESS;
}
Kernel::Process::Process(KernelSystem& kernel)
: Object(kernel), handle_table(kernel), kernel(kernel) {}
Kernel::Process::~Process() {}
SharedPtr<Process> KernelSystem::GetProcessById(u32 process_id) const {
auto itr = std::find_if(
process_list.begin(), process_list.end(),
[&](const SharedPtr<Process>& process) { return process->process_id == process_id; });
if (itr == process_list.end())
return nullptr;
return *itr;
}
} // namespace Kernel