citra/src/core/hle/kernel/thread.cpp
2020-02-13 17:42:09 +08:00

509 lines
18 KiB
C++

// Copyright 2014 Citra Emulator Project / PPSSPP Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <list>
#include <unordered_map>
#include <vector>
#include "common/archives.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/serialization/boost_flat_set.h"
#include "core/arm/arm_interface.h"
#include "core/arm/skyeye_common/armstate.h"
#include "core/core.h"
#include "core/global.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/result.h"
#include "core/memory.h"
SERIALIZE_EXPORT_IMPL(Kernel::Thread)
namespace Kernel {
template <class Archive>
void Thread::serialize(Archive& ar, const unsigned int file_version) {
ar& boost::serialization::base_object<WaitObject>(*this);
ar&* context.get();
ar& thread_id;
ar& status;
ar& entry_point;
ar& stack_top;
ar& nominal_priority;
ar& current_priority;
ar& last_running_ticks;
ar& processor_id;
ar& tls_address;
ar& held_mutexes;
ar& pending_mutexes;
ar& owner_process;
ar& wait_objects;
ar& wait_address;
ar& name;
ar& wakeup_callback;
}
SERIALIZE_IMPL(Thread)
bool Thread::ShouldWait(const Thread* thread) const {
return status != ThreadStatus::Dead;
}
void Thread::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
}
u32 ThreadManager::NewThreadId() {
return next_thread_id++;
}
Thread::Thread(KernelSystem& kernel)
: WaitObject(kernel), context(kernel.GetThreadManager().NewContext()),
thread_manager(kernel.GetThreadManager()) {}
Thread::~Thread() {}
Thread* ThreadManager::GetCurrentThread() const {
return current_thread.get();
}
void Thread::Stop() {
// Cancel any outstanding wakeup events for this thread
thread_manager.kernel.timing.UnscheduleEvent(thread_manager.ThreadWakeupEventType, thread_id);
thread_manager.wakeup_callback_table.erase(thread_id);
// Clean up thread from ready queue
// This is only needed when the thread is termintated forcefully (SVC TerminateProcess)
if (status == ThreadStatus::Ready) {
thread_manager.ready_queue.remove(current_priority, this);
}
status = ThreadStatus::Dead;
WakeupAllWaitingThreads();
// Clean up any dangling references in objects that this thread was waiting for
for (auto& wait_object : wait_objects) {
wait_object->RemoveWaitingThread(this);
}
wait_objects.clear();
// Release all the mutexes that this thread holds
ReleaseThreadMutexes(this);
// Mark the TLS slot in the thread's page as free.
u32 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::PAGE_SIZE;
u32 tls_slot =
((tls_address - Memory::TLS_AREA_VADDR) % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
owner_process->tls_slots[tls_page].reset(tls_slot);
}
void ThreadManager::SwitchContext(Thread* new_thread) {
Thread* previous_thread = GetCurrentThread();
Core::Timing& timing = kernel.timing;
// Save context for previous thread
if (previous_thread) {
previous_thread->last_running_ticks = timing.GetTicks();
cpu->SaveContext(previous_thread->context);
if (previous_thread->status == ThreadStatus::Running) {
// This is only the case when a reschedule is triggered without the current thread
// yielding execution (i.e. an event triggered, system core time-sliced, etc)
ready_queue.push_front(previous_thread->current_priority, previous_thread);
previous_thread->status = ThreadStatus::Ready;
}
}
// Load context of new thread
if (new_thread) {
ASSERT_MSG(new_thread->status == ThreadStatus::Ready,
"Thread must be ready to become running.");
// Cancel any outstanding wakeup events for this thread
timing.UnscheduleEvent(ThreadWakeupEventType, new_thread->thread_id);
auto previous_process = kernel.GetCurrentProcess();
current_thread = SharedFrom(new_thread);
ready_queue.remove(new_thread->current_priority, new_thread);
new_thread->status = ThreadStatus::Running;
if (previous_process != current_thread->owner_process) {
kernel.SetCurrentProcess(current_thread->owner_process);
}
cpu->LoadContext(new_thread->context);
cpu->SetCP15Register(CP15_THREAD_URO, new_thread->GetTLSAddress());
} else {
current_thread = nullptr;
// Note: We do not reset the current process and current page table when idling because
// technically we haven't changed processes, our threads are just paused.
}
}
Thread* ThreadManager::PopNextReadyThread() {
Thread* next;
Thread* thread = GetCurrentThread();
if (thread && thread->status == ThreadStatus::Running) {
// We have to do better than the current thread.
// This call returns null when that's not possible.
next = ready_queue.pop_first_better(thread->current_priority);
if (!next) {
// Otherwise just keep going with the current thread
next = thread;
}
} else {
next = ready_queue.pop_first();
}
return next;
}
void ThreadManager::WaitCurrentThread_Sleep() {
Thread* thread = GetCurrentThread();
thread->status = ThreadStatus::WaitSleep;
}
void ThreadManager::ExitCurrentThread() {
Thread* thread = GetCurrentThread();
thread->Stop();
thread_list.erase(std::remove_if(thread_list.begin(), thread_list.end(),
[thread](const auto& p) { return p.get() == thread; }),
thread_list.end());
}
void ThreadManager::ThreadWakeupCallback(u64 thread_id, s64 cycles_late) {
std::shared_ptr<Thread> thread = SharedFrom(wakeup_callback_table.at(thread_id));
if (thread == nullptr) {
LOG_CRITICAL(Kernel, "Callback fired for invalid thread {:08X}", thread_id);
return;
}
if (thread->status == ThreadStatus::WaitSynchAny ||
thread->status == ThreadStatus::WaitSynchAll || thread->status == ThreadStatus::WaitArb ||
thread->status == ThreadStatus::WaitHleEvent) {
// Invoke the wakeup callback before clearing the wait objects
if (thread->wakeup_callback)
thread->wakeup_callback->WakeUp(ThreadWakeupReason::Timeout, thread, nullptr);
// Remove the thread from each of its waiting objects' waitlists
for (auto& object : thread->wait_objects)
object->RemoveWaitingThread(thread.get());
thread->wait_objects.clear();
}
thread->ResumeFromWait();
}
void Thread::WakeAfterDelay(s64 nanoseconds) {
// Don't schedule a wakeup if the thread wants to wait forever
if (nanoseconds == -1)
return;
thread_manager.kernel.timing.ScheduleEvent(nsToCycles(nanoseconds),
thread_manager.ThreadWakeupEventType, thread_id);
}
void Thread::ResumeFromWait() {
ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects");
switch (status) {
case ThreadStatus::WaitSynchAll:
case ThreadStatus::WaitSynchAny:
case ThreadStatus::WaitHleEvent:
case ThreadStatus::WaitArb:
case ThreadStatus::WaitSleep:
case ThreadStatus::WaitIPC:
break;
case ThreadStatus::Ready:
// The thread's wakeup callback must have already been cleared when the thread was first
// awoken.
ASSERT(wakeup_callback == nullptr);
// If the thread is waiting on multiple wait objects, it might be awoken more than once
// before actually resuming. We can ignore subsequent wakeups if the thread status has
// already been set to ThreadStatus::Ready.
return;
case ThreadStatus::Running:
DEBUG_ASSERT_MSG(false, "Thread with object id {} has already resumed.", GetObjectId());
return;
case ThreadStatus::Dead:
// This should never happen, as threads must complete before being stopped.
DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.",
GetObjectId());
return;
}
wakeup_callback = nullptr;
thread_manager.ready_queue.push_back(current_priority, this);
status = ThreadStatus::Ready;
thread_manager.kernel.PrepareReschedule();
}
void ThreadManager::DebugThreadQueue() {
Thread* thread = GetCurrentThread();
if (!thread) {
LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD");
} else {
LOG_DEBUG(Kernel, "0x{:02X} {} (current)", thread->current_priority,
GetCurrentThread()->GetObjectId());
}
for (auto& t : thread_list) {
u32 priority = ready_queue.contains(t.get());
if (priority != -1) {
LOG_DEBUG(Kernel, "0x{:02X} {}", priority, t->GetObjectId());
}
}
}
/**
* Finds a free location for the TLS section of a thread.
* @param tls_slots The TLS page array of the thread's owner process.
* Returns a tuple of (page, slot, alloc_needed) where:
* page: The index of the first allocated TLS page that has free slots.
* slot: The index of the first free slot in the indicated page.
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
*/
static std::tuple<std::size_t, std::size_t, bool> GetFreeThreadLocalSlot(
const std::vector<std::bitset<8>>& tls_slots) {
// Iterate over all the allocated pages, and try to find one where not all slots are used.
for (std::size_t page = 0; page < tls_slots.size(); ++page) {
const auto& page_tls_slots = tls_slots[page];
if (!page_tls_slots.all()) {
// We found a page with at least one free slot, find which slot it is
for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) {
if (!page_tls_slots.test(slot)) {
return std::make_tuple(page, slot, false);
}
}
}
}
return std::make_tuple(0, 0, true);
}
/**
* Resets a thread context, making it ready to be scheduled and run by the CPU
* @param context Thread context to reset
* @param stack_top Address of the top of the stack
* @param entry_point Address of entry point for execution
* @param arg User argument for thread
*/
static void ResetThreadContext(const std::unique_ptr<ARM_Interface::ThreadContext>& context,
u32 stack_top, u32 entry_point, u32 arg) {
context->Reset();
context->SetCpuRegister(0, arg);
context->SetProgramCounter(entry_point);
context->SetStackPointer(stack_top);
context->SetCpsr(USER32MODE | ((entry_point & 1) << 5)); // Usermode and THUMB mode
}
ResultVal<std::shared_ptr<Thread>> KernelSystem::CreateThread(
std::string name, VAddr entry_point, u32 priority, u32 arg, s32 processor_id, VAddr stack_top,
std::shared_ptr<Process> owner_process) {
// Check if priority is in ranged. Lowest priority -> highest priority id.
if (priority > ThreadPrioLowest) {
LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority);
return ERR_OUT_OF_RANGE;
}
if (processor_id > ThreadProcessorIdMax) {
LOG_ERROR(Kernel_SVC, "Invalid processor id: {}", processor_id);
return ERR_OUT_OF_RANGE_KERNEL;
}
// TODO(yuriks): Other checks, returning 0xD9001BEA
if (!Memory::IsValidVirtualAddress(*owner_process, entry_point)) {
LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:08x}", name, entry_point);
// TODO: Verify error
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
}
auto thread{std::make_shared<Thread>(*this)};
thread_manager->thread_list.push_back(thread);
thread_manager->ready_queue.prepare(priority);
thread->thread_id = thread_manager->NewThreadId();
thread->status = ThreadStatus::Dormant;
thread->entry_point = entry_point;
thread->stack_top = stack_top;
thread->nominal_priority = thread->current_priority = priority;
thread->last_running_ticks = timing.GetTicks();
thread->processor_id = processor_id;
thread->wait_objects.clear();
thread->wait_address = 0;
thread->name = std::move(name);
thread_manager->wakeup_callback_table[thread->thread_id] = thread.get();
thread->owner_process = owner_process;
// Find the next available TLS index, and mark it as used
auto& tls_slots = owner_process->tls_slots;
auto [available_page, available_slot, needs_allocation] = GetFreeThreadLocalSlot(tls_slots);
if (needs_allocation) {
// There are no already-allocated pages with free slots, lets allocate a new one.
// TLS pages are allocated from the BASE region in the linear heap.
auto memory_region = GetMemoryRegion(MemoryRegion::BASE);
// Allocate some memory from the end of the linear heap for this region.
auto offset = memory_region->LinearAllocate(Memory::PAGE_SIZE);
if (!offset) {
LOG_ERROR(Kernel_SVC,
"Not enough space in region to allocate a new TLS page for thread");
return ERR_OUT_OF_MEMORY;
}
owner_process->memory_used += Memory::PAGE_SIZE;
tls_slots.emplace_back(0); // The page is completely available at the start
available_page = tls_slots.size() - 1;
available_slot = 0; // Use the first slot in the new page
auto& vm_manager = owner_process->vm_manager;
// Map the page to the current process' address space.
vm_manager.MapBackingMemory(Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE,
memory.GetFCRAMRef(*offset), Memory::PAGE_SIZE,
MemoryState::Locked);
}
// Mark the slot as used
tls_slots[available_page].set(available_slot);
thread->tls_address = Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE +
available_slot * Memory::TLS_ENTRY_SIZE;
memory.ZeroBlock(*owner_process, thread->tls_address, Memory::TLS_ENTRY_SIZE);
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
// to initialize the context
ResetThreadContext(thread->context, stack_top, entry_point, arg);
thread_manager->ready_queue.push_back(thread->current_priority, thread.get());
thread->status = ThreadStatus::Ready;
return MakeResult<std::shared_ptr<Thread>>(std::move(thread));
}
void Thread::SetPriority(u32 priority) {
ASSERT_MSG(priority <= ThreadPrioLowest && priority >= ThreadPrioHighest,
"Invalid priority value.");
// If thread was ready, adjust queues
if (status == ThreadStatus::Ready)
thread_manager.ready_queue.move(this, current_priority, priority);
else
thread_manager.ready_queue.prepare(priority);
nominal_priority = current_priority = priority;
}
void Thread::UpdatePriority() {
u32 best_priority = nominal_priority;
for (auto& mutex : held_mutexes) {
if (mutex->priority < best_priority)
best_priority = mutex->priority;
}
BoostPriority(best_priority);
}
void Thread::BoostPriority(u32 priority) {
// If thread was ready, adjust queues
if (status == ThreadStatus::Ready)
thread_manager.ready_queue.move(this, current_priority, priority);
else
thread_manager.ready_queue.prepare(priority);
current_priority = priority;
}
std::shared_ptr<Thread> SetupMainThread(KernelSystem& kernel, u32 entry_point, u32 priority,
std::shared_ptr<Process> owner_process) {
// Initialize new "main" thread
auto thread_res =
kernel.CreateThread("main", entry_point, priority, 0, owner_process->ideal_processor,
Memory::HEAP_VADDR_END, owner_process);
std::shared_ptr<Thread> thread = std::move(thread_res).Unwrap();
thread->context->SetFpscr(FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO | FPSCR_ROUND_TOZERO |
FPSCR_IXC); // 0x03C00010
// Note: The newly created thread will be run when the scheduler fires.
return thread;
}
bool ThreadManager::HaveReadyThreads() {
return ready_queue.get_first() != nullptr;
}
void ThreadManager::Reschedule() {
Thread* cur = GetCurrentThread();
Thread* next = PopNextReadyThread();
if (cur && next) {
LOG_TRACE(Kernel, "context switch {} -> {}", cur->GetObjectId(), next->GetObjectId());
} else if (cur) {
LOG_TRACE(Kernel, "context switch {} -> idle", cur->GetObjectId());
} else if (next) {
LOG_TRACE(Kernel, "context switch idle -> {}", next->GetObjectId());
}
SwitchContext(next);
}
void Thread::SetWaitSynchronizationResult(ResultCode result) {
context->SetCpuRegister(0, result.raw);
}
void Thread::SetWaitSynchronizationOutput(s32 output) {
context->SetCpuRegister(1, output);
}
s32 Thread::GetWaitObjectIndex(const WaitObject* object) const {
ASSERT_MSG(!wait_objects.empty(), "Thread is not waiting for anything");
const auto match = std::find_if(wait_objects.rbegin(), wait_objects.rend(),
[object](const auto& p) { return p.get() == object; });
return static_cast<s32>(std::distance(match, wait_objects.rend()) - 1);
}
VAddr Thread::GetCommandBufferAddress() const {
// Offset from the start of TLS at which the IPC command buffer begins.
constexpr u32 command_header_offset = 0x80;
return GetTLSAddress() + command_header_offset;
}
ThreadManager::ThreadManager(Kernel::KernelSystem& kernel) : kernel(kernel) {
ThreadWakeupEventType =
kernel.timing.RegisterEvent("ThreadWakeupCallback", [this](u64 thread_id, s64 cycle_late) {
ThreadWakeupCallback(thread_id, cycle_late);
});
}
ThreadManager::~ThreadManager() {
for (auto& t : thread_list) {
t->Stop();
}
}
const std::vector<std::shared_ptr<Thread>>& ThreadManager::GetThreadList() {
return thread_list;
}
} // namespace Kernel