mirror of
				https://github.com/PabloMK7/citra.git
				synced 2025-10-31 05:40:04 +00:00 
			
		
		
		
	CoreTiming: Reworked CoreTiming (#3119)
* CoreTiming: New CoreTiming; Add Test for CoreTiming
This commit is contained in:
		
							parent
							
								
									b7cf793814
								
							
						
					
					
						commit
						e9a95b2e7d
					
				
					 18 changed files with 678 additions and 593 deletions
				
			
		|  | @ -18,7 +18,7 @@ | |||
| namespace AudioCore { | ||||
| 
 | ||||
| // Audio Ticks occur about every 5 miliseconds.
 | ||||
| static int tick_event;                               ///< CoreTiming event
 | ||||
| static CoreTiming::EventType* tick_event;            ///< CoreTiming event
 | ||||
| static constexpr u64 audio_frame_ticks = 1310252ull; ///< Units: ARM11 cycles
 | ||||
| 
 | ||||
| static void AudioTickCallback(u64 /*userdata*/, int cycles_late) { | ||||
|  |  | |||
|  | @ -76,6 +76,7 @@ set(HEADERS | |||
|             telemetry.h | ||||
|             thread.h | ||||
|             thread_queue_list.h | ||||
|             threadsafe_queue.h | ||||
|             timer.h | ||||
|             vector_math.h | ||||
|             ) | ||||
|  |  | |||
							
								
								
									
										122
									
								
								src/common/threadsafe_queue.h
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										122
									
								
								src/common/threadsafe_queue.h
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,122 @@ | |||
| // Copyright 2010 Dolphin Emulator Project
 | ||||
| // Licensed under GPLv2+
 | ||||
| // Refer to the license.txt file included.
 | ||||
| 
 | ||||
| #pragma once | ||||
| 
 | ||||
| // a simple lockless thread-safe,
 | ||||
| // single reader, single writer queue
 | ||||
| 
 | ||||
| #include <algorithm> | ||||
| #include <atomic> | ||||
| #include <cstddef> | ||||
| #include <mutex> | ||||
| #include "common/common_types.h" | ||||
| 
 | ||||
| namespace Common { | ||||
| template <typename T, bool NeedSize = true> | ||||
| class SPSCQueue { | ||||
| public: | ||||
|     SPSCQueue() : size(0) { | ||||
|         write_ptr = read_ptr = new ElementPtr(); | ||||
|     } | ||||
|     ~SPSCQueue() { | ||||
|         // this will empty out the whole queue
 | ||||
|         delete read_ptr; | ||||
|     } | ||||
| 
 | ||||
|     u32 Size() const { | ||||
|         static_assert(NeedSize, "using Size() on FifoQueue without NeedSize"); | ||||
|         return size.load(); | ||||
|     } | ||||
| 
 | ||||
|     bool Empty() const { | ||||
|         return !read_ptr->next.load(); | ||||
|     } | ||||
|     T& Front() const { | ||||
|         return read_ptr->current; | ||||
|     } | ||||
|     template <typename Arg> | ||||
|     void Push(Arg&& t) { | ||||
|         // create the element, add it to the queue
 | ||||
|         write_ptr->current = std::forward<Arg>(t); | ||||
|         // set the next pointer to a new element ptr
 | ||||
|         // then advance the write pointer
 | ||||
|         ElementPtr* new_ptr = new ElementPtr(); | ||||
|         write_ptr->next.store(new_ptr, std::memory_order_release); | ||||
|         write_ptr = new_ptr; | ||||
|         if (NeedSize) | ||||
|             size++; | ||||
|     } | ||||
| 
 | ||||
|     void Pop() { | ||||
|         if (NeedSize) | ||||
|             size--; | ||||
|         ElementPtr* tmpptr = read_ptr; | ||||
|         // advance the read pointer
 | ||||
|         read_ptr = tmpptr->next.load(); | ||||
|         // set the next element to nullptr to stop the recursive deletion
 | ||||
|         tmpptr->next.store(nullptr); | ||||
|         delete tmpptr; // this also deletes the element
 | ||||
|     } | ||||
| 
 | ||||
|     bool Pop(T& t) { | ||||
|         if (Empty()) | ||||
|             return false; | ||||
| 
 | ||||
|         if (NeedSize) | ||||
|             size--; | ||||
| 
 | ||||
|         ElementPtr* tmpptr = read_ptr; | ||||
|         read_ptr = tmpptr->next.load(std::memory_order_acquire); | ||||
|         t = std::move(tmpptr->current); | ||||
|         tmpptr->next.store(nullptr); | ||||
|         delete tmpptr; | ||||
|         return true; | ||||
|     } | ||||
| 
 | ||||
|     // not thread-safe
 | ||||
|     void Clear() { | ||||
|         size.store(0); | ||||
|         delete read_ptr; | ||||
|         write_ptr = read_ptr = new ElementPtr(); | ||||
|     } | ||||
| 
 | ||||
| private: | ||||
|     // stores a pointer to element
 | ||||
|     // and a pointer to the next ElementPtr
 | ||||
|     class ElementPtr { | ||||
|     public: | ||||
|         ElementPtr() : next(nullptr) {} | ||||
|         ~ElementPtr() { | ||||
|             ElementPtr* next_ptr = next.load(); | ||||
| 
 | ||||
|             if (next_ptr) | ||||
|                 delete next_ptr; | ||||
|         } | ||||
| 
 | ||||
|         T current; | ||||
|         std::atomic<ElementPtr*> next; | ||||
|     }; | ||||
| 
 | ||||
|     ElementPtr* write_ptr; | ||||
|     ElementPtr* read_ptr; | ||||
|     std::atomic<u32> size; | ||||
| }; | ||||
| 
 | ||||
| // a simple thread-safe,
 | ||||
| // single reader, multiple writer queue
 | ||||
| 
 | ||||
| template <typename T, bool NeedSize = true> | ||||
| class MPSCQueue : public SPSCQueue<T, NeedSize> { | ||||
| public: | ||||
|     template <typename Arg> | ||||
|     void Push(Arg&& t) { | ||||
|         std::lock_guard<std::mutex> lock(write_lock); | ||||
|         SPSCQueue<T, NeedSize>::Push(t); | ||||
|     } | ||||
| 
 | ||||
| private: | ||||
|     std::mutex write_lock; | ||||
| }; | ||||
| } // namespace Common
 | ||||
|  | @ -56,6 +56,7 @@ System::ResultStatus System::RunLoop(int tight_loop) { | |||
|         CoreTiming::Advance(); | ||||
|         PrepareReschedule(); | ||||
|     } else { | ||||
|         CoreTiming::Advance(); | ||||
|         cpu_core->Run(tight_loop); | ||||
|     } | ||||
| 
 | ||||
|  |  | |||
|  | @ -1,562 +1,238 @@ | |||
| // Copyright (c) 2012- PPSSPP Project / Dolphin Project.
 | ||||
| // Licensed under GPLv2 or any later version
 | ||||
| // Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
 | ||||
| // Licensed under GPLv2+
 | ||||
| // Refer to the license.txt file included.
 | ||||
| 
 | ||||
| #include <atomic> | ||||
| #include <cinttypes> | ||||
| #include <mutex> | ||||
| #include <vector> | ||||
| #include "common/chunk_file.h" | ||||
| #include "common/logging/log.h" | ||||
| #include "common/string_util.h" | ||||
| #include "core/arm/arm_interface.h" | ||||
| #include "core/core.h" | ||||
| #include "core/core_timing.h" | ||||
| 
 | ||||
| int g_clock_rate_arm11 = BASE_CLOCK_RATE_ARM11; | ||||
| 
 | ||||
| // is this really necessary?
 | ||||
| #define INITIAL_SLICE_LENGTH 20000 | ||||
| #define MAX_SLICE_LENGTH 100000000 | ||||
| #include <algorithm> | ||||
| #include <cinttypes> | ||||
| #include <mutex> | ||||
| #include <string> | ||||
| #include <tuple> | ||||
| #include <unordered_map> | ||||
| #include <vector> | ||||
| #include "common/assert.h" | ||||
| #include "common/logging/log.h" | ||||
| #include "common/thread.h" | ||||
| #include "common/threadsafe_queue.h" | ||||
| 
 | ||||
| namespace CoreTiming { | ||||
| struct EventType { | ||||
|     EventType() {} | ||||
| 
 | ||||
|     EventType(TimedCallback cb, const char* n) : callback(cb), name(n) {} | ||||
| 
 | ||||
|     TimedCallback callback; | ||||
|     const char* name; | ||||
| }; | ||||
| 
 | ||||
| static std::vector<EventType> event_types; | ||||
| 
 | ||||
| struct BaseEvent { | ||||
|     s64 time; | ||||
|     u64 userdata; | ||||
|     int type; | ||||
| }; | ||||
| 
 | ||||
| typedef LinkedListItem<BaseEvent> Event; | ||||
| 
 | ||||
| static Event* first; | ||||
| static Event* ts_first; | ||||
| static Event* ts_last; | ||||
| 
 | ||||
| // event pools
 | ||||
| static Event* event_pool = nullptr; | ||||
| static Event* event_ts_pool = nullptr; | ||||
| static int allocated_ts_events = 0; | ||||
| // Optimization to skip MoveEvents when possible.
 | ||||
| static std::atomic<bool> has_ts_events(false); | ||||
| 
 | ||||
| int g_slice_length; | ||||
| 
 | ||||
| static s64 global_timer; | ||||
| static int slice_length; | ||||
| static int downcount; | ||||
| 
 | ||||
| struct EventType { | ||||
|     TimedCallback callback; | ||||
|     const std::string* name; | ||||
| }; | ||||
| 
 | ||||
| struct Event { | ||||
|     s64 time; | ||||
|     u64 fifo_order; | ||||
|     u64 userdata; | ||||
|     const EventType* type; | ||||
| }; | ||||
| 
 | ||||
| // Sort by time, unless the times are the same, in which case sort by the order added to the queue
 | ||||
| static bool operator>(const Event& left, const Event& right) { | ||||
|     return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order); | ||||
| } | ||||
| 
 | ||||
| static bool operator<(const Event& left, const Event& right) { | ||||
|     return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order); | ||||
| } | ||||
| 
 | ||||
| // unordered_map stores each element separately as a linked list node so pointers to elements
 | ||||
| // remain stable regardless of rehashes/resizing.
 | ||||
| static std::unordered_map<std::string, EventType> event_types; | ||||
| 
 | ||||
| // The queue is a min-heap using std::make_heap/push_heap/pop_heap.
 | ||||
| // We don't use std::priority_queue because we need to be able to serialize, unserialize and
 | ||||
| // erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated
 | ||||
| // by the standard adaptor class.
 | ||||
| static std::vector<Event> event_queue; | ||||
| static u64 event_fifo_id; | ||||
| // the queue for storing the events from other threads threadsafe until they will be added
 | ||||
| // to the event_queue by the emu thread
 | ||||
| static Common::MPSCQueue<Event, false> ts_queue; | ||||
| 
 | ||||
| static constexpr int MAX_SLICE_LENGTH = 20000; | ||||
| 
 | ||||
| static s64 idled_cycles; | ||||
| static s64 last_global_time_ticks; | ||||
| static s64 last_global_time_us; | ||||
| 
 | ||||
| static s64 down_count = 0; ///< A decreasing counter of remaining cycles before the next event,
 | ||||
|                            /// decreased by the cpu run loop
 | ||||
| // Are we in a function that has been called from Advance()
 | ||||
| // If events are sheduled from a function that gets called from Advance(),
 | ||||
| // don't change slice_length and downcount.
 | ||||
| static bool is_global_timer_sane; | ||||
| 
 | ||||
| static std::recursive_mutex external_event_section; | ||||
| static EventType* ev_lost = nullptr; | ||||
| 
 | ||||
| // Warning: not included in save state.
 | ||||
| using AdvanceCallback = void(int cycles_executed); | ||||
| static AdvanceCallback* advance_callback = nullptr; | ||||
| static std::vector<MHzChangeCallback> mhz_change_callbacks; | ||||
| static void EmptyTimedCallback(u64 userdata, s64 cyclesLate) {} | ||||
| 
 | ||||
| static void FireMhzChange() { | ||||
|     for (auto callback : mhz_change_callbacks) | ||||
|         callback(); | ||||
| } | ||||
| EventType* RegisterEvent(const std::string& name, TimedCallback callback) { | ||||
|     // check for existing type with same name.
 | ||||
|     // we want event type names to remain unique so that we can use them for serialization.
 | ||||
|     ASSERT_MSG(event_types.find(name) == event_types.end(), | ||||
|                "CoreTiming Event \"%s\" is already registered. Events should only be registered " | ||||
|                "during Init to avoid breaking save states.", | ||||
|                name.c_str()); | ||||
| 
 | ||||
| void SetClockFrequencyMHz(int cpu_mhz) { | ||||
|     // When the mhz changes, we keep track of what "time" it was before hand.
 | ||||
|     // This way, time always moves forward, even if mhz is changed.
 | ||||
|     last_global_time_us = GetGlobalTimeUs(); | ||||
|     last_global_time_ticks = GetTicks(); | ||||
| 
 | ||||
|     g_clock_rate_arm11 = cpu_mhz * 1000000; | ||||
|     // TODO: Rescale times of scheduled events?
 | ||||
| 
 | ||||
|     FireMhzChange(); | ||||
| } | ||||
| 
 | ||||
| int GetClockFrequencyMHz() { | ||||
|     return g_clock_rate_arm11 / 1000000; | ||||
| } | ||||
| 
 | ||||
| u64 GetGlobalTimeUs() { | ||||
|     s64 ticks_since_last = GetTicks() - last_global_time_ticks; | ||||
|     int freq = GetClockFrequencyMHz(); | ||||
|     s64 us_since_last = ticks_since_last / freq; | ||||
|     return last_global_time_us + us_since_last; | ||||
| } | ||||
| 
 | ||||
| static Event* GetNewEvent() { | ||||
|     if (!event_pool) | ||||
|         return new Event; | ||||
| 
 | ||||
|     Event* event = event_pool; | ||||
|     event_pool = event->next; | ||||
|     return event; | ||||
| } | ||||
| 
 | ||||
| static Event* GetNewTsEvent() { | ||||
|     allocated_ts_events++; | ||||
| 
 | ||||
|     if (!event_ts_pool) | ||||
|         return new Event; | ||||
| 
 | ||||
|     Event* event = event_ts_pool; | ||||
|     event_ts_pool = event->next; | ||||
|     return event; | ||||
| } | ||||
| 
 | ||||
| static void FreeEvent(Event* event) { | ||||
|     event->next = event_pool; | ||||
|     event_pool = event; | ||||
| } | ||||
| 
 | ||||
| static void FreeTsEvent(Event* event) { | ||||
|     event->next = event_ts_pool; | ||||
|     event_ts_pool = event; | ||||
|     allocated_ts_events--; | ||||
| } | ||||
| 
 | ||||
| int RegisterEvent(const char* name, TimedCallback callback) { | ||||
|     event_types.emplace_back(callback, name); | ||||
|     return (int)event_types.size() - 1; | ||||
| } | ||||
| 
 | ||||
| static void AntiCrashCallback(u64 userdata, int cycles_late) { | ||||
|     LOG_CRITICAL(Core_Timing, "Savestate broken: an unregistered event was called."); | ||||
| } | ||||
| 
 | ||||
| void RestoreRegisterEvent(int event_type, const char* name, TimedCallback callback) { | ||||
|     if (event_type >= (int)event_types.size()) | ||||
|         event_types.resize(event_type + 1, EventType(AntiCrashCallback, "INVALID EVENT")); | ||||
| 
 | ||||
|     event_types[event_type] = EventType(callback, name); | ||||
|     auto info = event_types.emplace(name, EventType{callback, nullptr}); | ||||
|     EventType* event_type = &info.first->second; | ||||
|     event_type->name = &info.first->first; | ||||
|     return event_type; | ||||
| } | ||||
| 
 | ||||
| void UnregisterAllEvents() { | ||||
|     if (first) | ||||
|         LOG_ERROR(Core_Timing, "Cannot unregister events with events pending"); | ||||
|     ASSERT_MSG(event_queue.empty(), "Cannot unregister events with events pending"); | ||||
|     event_types.clear(); | ||||
| } | ||||
| 
 | ||||
| void Init() { | ||||
|     down_count = INITIAL_SLICE_LENGTH; | ||||
|     g_slice_length = INITIAL_SLICE_LENGTH; | ||||
|     downcount = MAX_SLICE_LENGTH; | ||||
|     slice_length = MAX_SLICE_LENGTH; | ||||
|     global_timer = 0; | ||||
|     idled_cycles = 0; | ||||
|     last_global_time_ticks = 0; | ||||
|     last_global_time_us = 0; | ||||
|     has_ts_events = 0; | ||||
|     mhz_change_callbacks.clear(); | ||||
| 
 | ||||
|     first = nullptr; | ||||
|     ts_first = nullptr; | ||||
|     ts_last = nullptr; | ||||
|     // The time between CoreTiming being intialized and the first call to Advance() is considered
 | ||||
|     // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
 | ||||
|     // executing the first cycle of each slice to prepare the slice length and downcount for
 | ||||
|     // that slice.
 | ||||
|     is_global_timer_sane = true; | ||||
| 
 | ||||
|     event_pool = nullptr; | ||||
|     event_ts_pool = nullptr; | ||||
|     allocated_ts_events = 0; | ||||
| 
 | ||||
|     advance_callback = nullptr; | ||||
|     event_fifo_id = 0; | ||||
|     ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback); | ||||
| } | ||||
| 
 | ||||
| void Shutdown() { | ||||
|     MoveEvents(); | ||||
|     ClearPendingEvents(); | ||||
|     UnregisterAllEvents(); | ||||
| } | ||||
| 
 | ||||
|     while (event_pool) { | ||||
|         Event* event = event_pool; | ||||
|         event_pool = event->next; | ||||
|         delete event; | ||||
|     } | ||||
| 
 | ||||
|     std::lock_guard<std::recursive_mutex> lock(external_event_section); | ||||
|     while (event_ts_pool) { | ||||
|         Event* event = event_ts_pool; | ||||
|         event_ts_pool = event->next; | ||||
|         delete event; | ||||
| // This should only be called from the CPU thread. If you are calling
 | ||||
| // it from any other thread, you are doing something evil
 | ||||
| u64 GetTicks() { | ||||
|     u64 ticks = static_cast<u64>(global_timer); | ||||
|     if (!is_global_timer_sane) { | ||||
|         ticks += slice_length - downcount; | ||||
|     } | ||||
|     return ticks; | ||||
| } | ||||
| 
 | ||||
| void AddTicks(u64 ticks) { | ||||
|     down_count -= ticks; | ||||
|     if (down_count < 0) { | ||||
|         Advance(); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| u64 GetTicks() { | ||||
|     return (u64)global_timer + g_slice_length - down_count; | ||||
|     downcount -= ticks; | ||||
| } | ||||
| 
 | ||||
| u64 GetIdleTicks() { | ||||
|     return (u64)idled_cycles; | ||||
| } | ||||
| 
 | ||||
| // This is to be called when outside threads, such as the graphics thread, wants to
 | ||||
| // schedule things to be executed on the main thread.
 | ||||
| void ScheduleEvent_Threadsafe(s64 cycles_into_future, int event_type, u64 userdata) { | ||||
|     std::lock_guard<std::recursive_mutex> lock(external_event_section); | ||||
|     Event* new_event = GetNewTsEvent(); | ||||
|     new_event->time = GetTicks() + cycles_into_future; | ||||
|     new_event->type = event_type; | ||||
|     new_event->next = nullptr; | ||||
|     new_event->userdata = userdata; | ||||
|     if (!ts_first) | ||||
|         ts_first = new_event; | ||||
|     if (ts_last) | ||||
|         ts_last->next = new_event; | ||||
|     ts_last = new_event; | ||||
| 
 | ||||
|     has_ts_events = true; | ||||
| } | ||||
| 
 | ||||
| // Same as ScheduleEvent_Threadsafe(0, ...) EXCEPT if we are already on the CPU thread
 | ||||
| // in which case the event will get handled immediately, before returning.
 | ||||
| void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata) { | ||||
|     if (false) // Core::IsCPUThread())
 | ||||
|     { | ||||
|         std::lock_guard<std::recursive_mutex> lock(external_event_section); | ||||
|         event_types[event_type].callback(userdata, 0); | ||||
|     } else | ||||
|         ScheduleEvent_Threadsafe(0, event_type, userdata); | ||||
|     return static_cast<u64>(idled_cycles); | ||||
| } | ||||
| 
 | ||||
| void ClearPendingEvents() { | ||||
|     while (first) { | ||||
|         Event* event = first->next; | ||||
|         FreeEvent(first); | ||||
|         first = event; | ||||
|     event_queue.clear(); | ||||
| } | ||||
| 
 | ||||
| void ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 userdata) { | ||||
|     ASSERT(event_type != nullptr); | ||||
|     s64 timeout = GetTicks() + cycles_into_future; | ||||
| 
 | ||||
|     // If this event needs to be scheduled before the next advance(), force one early
 | ||||
|     if (!is_global_timer_sane) | ||||
|         ForceExceptionCheck(cycles_into_future); | ||||
| 
 | ||||
|     event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type}); | ||||
|     std::push_heap(event_queue.begin(), event_queue.end(), std::greater<Event>()); | ||||
| } | ||||
| 
 | ||||
| void ScheduleEventThreadsafe(s64 cycles_into_future, const EventType* event_type, u64 userdata) { | ||||
|     ts_queue.Push(Event{global_timer + cycles_into_future, 0, userdata, event_type}); | ||||
| } | ||||
| 
 | ||||
| void UnscheduleEvent(const EventType* event_type, u64 userdata) { | ||||
|     auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { | ||||
|         return e.type == event_type && e.userdata == userdata; | ||||
|     }); | ||||
| 
 | ||||
|     // Removing random items breaks the invariant so we have to re-establish it.
 | ||||
|     if (itr != event_queue.end()) { | ||||
|         event_queue.erase(itr, event_queue.end()); | ||||
|         std::make_heap(event_queue.begin(), event_queue.end(), std::greater<Event>()); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| static void AddEventToQueue(Event* new_event) { | ||||
|     Event* prev_event = nullptr; | ||||
|     Event** next_event = &first; | ||||
|     for (;;) { | ||||
|         Event*& next = *next_event; | ||||
|         if (!next || new_event->time < next->time) { | ||||
|             new_event->next = next; | ||||
|             next = new_event; | ||||
|             break; | ||||
|         } | ||||
|         prev_event = next; | ||||
|         next_event = &prev_event->next; | ||||
| void RemoveEvent(const EventType* event_type) { | ||||
|     auto itr = std::remove_if(event_queue.begin(), event_queue.end(), | ||||
|                               [&](const Event& e) { return e.type == event_type; }); | ||||
| 
 | ||||
|     // Removing random items breaks the invariant so we have to re-establish it.
 | ||||
|     if (itr != event_queue.end()) { | ||||
|         event_queue.erase(itr, event_queue.end()); | ||||
|         std::make_heap(event_queue.begin(), event_queue.end(), std::greater<Event>()); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| void ScheduleEvent(s64 cycles_into_future, int event_type, u64 userdata) { | ||||
|     Event* new_event = GetNewEvent(); | ||||
|     new_event->userdata = userdata; | ||||
|     new_event->type = event_type; | ||||
|     new_event->time = GetTicks() + cycles_into_future; | ||||
|     AddEventToQueue(new_event); | ||||
| } | ||||
| 
 | ||||
| s64 UnscheduleEvent(int event_type, u64 userdata) { | ||||
|     s64 result = 0; | ||||
|     if (!first) | ||||
|         return result; | ||||
|     while (first) { | ||||
|         if (first->type == event_type && first->userdata == userdata) { | ||||
|             result = first->time - GetTicks(); | ||||
| 
 | ||||
|             Event* next = first->next; | ||||
|             FreeEvent(first); | ||||
|             first = next; | ||||
|         } else { | ||||
|             break; | ||||
|         } | ||||
|     } | ||||
|     if (!first) | ||||
|         return result; | ||||
| 
 | ||||
|     Event* prev_event = first; | ||||
|     Event* ptr = prev_event->next; | ||||
| 
 | ||||
|     while (ptr) { | ||||
|         if (ptr->type == event_type && ptr->userdata == userdata) { | ||||
|             result = ptr->time - GetTicks(); | ||||
| 
 | ||||
|             prev_event->next = ptr->next; | ||||
|             FreeEvent(ptr); | ||||
|             ptr = prev_event->next; | ||||
|         } else { | ||||
|             prev_event = ptr; | ||||
|             ptr = ptr->next; | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     return result; | ||||
| } | ||||
| 
 | ||||
| s64 UnscheduleThreadsafeEvent(int event_type, u64 userdata) { | ||||
|     s64 result = 0; | ||||
|     std::lock_guard<std::recursive_mutex> lock(external_event_section); | ||||
|     if (!ts_first) | ||||
|         return result; | ||||
| 
 | ||||
|     while (ts_first) { | ||||
|         if (ts_first->type == event_type && ts_first->userdata == userdata) { | ||||
|             result = ts_first->time - GetTicks(); | ||||
| 
 | ||||
|             Event* next = ts_first->next; | ||||
|             FreeTsEvent(ts_first); | ||||
|             ts_first = next; | ||||
|         } else { | ||||
|             break; | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     if (!ts_first) { | ||||
|         ts_last = nullptr; | ||||
|         return result; | ||||
|     } | ||||
| 
 | ||||
|     Event* prev_event = ts_first; | ||||
|     Event* next = prev_event->next; | ||||
|     while (next) { | ||||
|         if (next->type == event_type && next->userdata == userdata) { | ||||
|             result = next->time - GetTicks(); | ||||
| 
 | ||||
|             prev_event->next = next->next; | ||||
|             if (next == ts_last) | ||||
|                 ts_last = prev_event; | ||||
|             FreeTsEvent(next); | ||||
|             next = prev_event->next; | ||||
|         } else { | ||||
|             prev_event = next; | ||||
|             next = next->next; | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     return result; | ||||
| } | ||||
| 
 | ||||
| // Warning: not included in save state.
 | ||||
| void RegisterAdvanceCallback(AdvanceCallback* callback) { | ||||
|     advance_callback = callback; | ||||
| } | ||||
| 
 | ||||
| void RegisterMHzChangeCallback(MHzChangeCallback callback) { | ||||
|     mhz_change_callbacks.push_back(callback); | ||||
| } | ||||
| 
 | ||||
| bool IsScheduled(int event_type) { | ||||
|     if (!first) | ||||
|         return false; | ||||
|     Event* event = first; | ||||
|     while (event) { | ||||
|         if (event->type == event_type) | ||||
|             return true; | ||||
|         event = event->next; | ||||
|     } | ||||
|     return false; | ||||
| } | ||||
| 
 | ||||
| void RemoveEvent(int event_type) { | ||||
|     if (!first) | ||||
|         return; | ||||
|     while (first) { | ||||
|         if (first->type == event_type) { | ||||
|             Event* next = first->next; | ||||
|             FreeEvent(first); | ||||
|             first = next; | ||||
|         } else { | ||||
|             break; | ||||
|         } | ||||
|     } | ||||
|     if (!first) | ||||
|         return; | ||||
|     Event* prev = first; | ||||
|     Event* next = prev->next; | ||||
|     while (next) { | ||||
|         if (next->type == event_type) { | ||||
|             prev->next = next->next; | ||||
|             FreeEvent(next); | ||||
|             next = prev->next; | ||||
|         } else { | ||||
|             prev = next; | ||||
|             next = next->next; | ||||
|         } | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| void RemoveThreadsafeEvent(int event_type) { | ||||
|     std::lock_guard<std::recursive_mutex> lock(external_event_section); | ||||
|     if (!ts_first) | ||||
|         return; | ||||
| 
 | ||||
|     while (ts_first) { | ||||
|         if (ts_first->type == event_type) { | ||||
|             Event* next = ts_first->next; | ||||
|             FreeTsEvent(ts_first); | ||||
|             ts_first = next; | ||||
|         } else { | ||||
|             break; | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     if (!ts_first) { | ||||
|         ts_last = nullptr; | ||||
|         return; | ||||
|     } | ||||
| 
 | ||||
|     Event* prev = ts_first; | ||||
|     Event* next = prev->next; | ||||
|     while (next) { | ||||
|         if (next->type == event_type) { | ||||
|             prev->next = next->next; | ||||
|             if (next == ts_last) | ||||
|                 ts_last = prev; | ||||
|             FreeTsEvent(next); | ||||
|             next = prev->next; | ||||
|         } else { | ||||
|             prev = next; | ||||
|             next = next->next; | ||||
|         } | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| void RemoveAllEvents(int event_type) { | ||||
|     RemoveThreadsafeEvent(event_type); | ||||
| void RemoveNormalAndThreadsafeEvent(const EventType* event_type) { | ||||
|     MoveEvents(); | ||||
|     RemoveEvent(event_type); | ||||
| } | ||||
| 
 | ||||
| // This raise only the events required while the fifo is processing data
 | ||||
| void ProcessFifoWaitEvents() { | ||||
|     while (first) { | ||||
|         if (first->time <= (s64)GetTicks()) { | ||||
|             Event* evt = first; | ||||
|             first = first->next; | ||||
|             event_types[evt->type].callback(evt->userdata, (int)(GetTicks() - evt->time)); | ||||
|             FreeEvent(evt); | ||||
|         } else { | ||||
|             break; | ||||
|         } | ||||
| void ForceExceptionCheck(s64 cycles) { | ||||
|     cycles = std::max<s64>(0, cycles); | ||||
|     if (downcount > cycles) { | ||||
|         // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int
 | ||||
|         // here. Account for cycles already executed by adjusting the g.slice_length
 | ||||
|         slice_length -= downcount - static_cast<int>(cycles); | ||||
|         downcount = static_cast<int>(cycles); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| void MoveEvents() { | ||||
|     has_ts_events = false; | ||||
| 
 | ||||
|     std::lock_guard<std::recursive_mutex> lock(external_event_section); | ||||
|     // Move events from async queue into main queue
 | ||||
|     while (ts_first) { | ||||
|         Event* next = ts_first->next; | ||||
|         AddEventToQueue(ts_first); | ||||
|         ts_first = next; | ||||
|     for (Event ev; ts_queue.Pop(ev);) { | ||||
|         ev.fifo_order = event_fifo_id++; | ||||
|         event_queue.emplace_back(std::move(ev)); | ||||
|         std::push_heap(event_queue.begin(), event_queue.end(), std::greater<Event>()); | ||||
|     } | ||||
|     ts_last = nullptr; | ||||
| 
 | ||||
|     // Move free events to threadsafe pool
 | ||||
|     while (allocated_ts_events > 0 && event_pool) { | ||||
|         Event* event = event_pool; | ||||
|         event_pool = event->next; | ||||
|         event->next = event_ts_pool; | ||||
|         event_ts_pool = event; | ||||
|         allocated_ts_events--; | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| void ForceCheck() { | ||||
|     s64 cycles_executed = g_slice_length - down_count; | ||||
|     global_timer += cycles_executed; | ||||
|     // This will cause us to check for new events immediately.
 | ||||
|     down_count = 0; | ||||
|     // But let's not eat a bunch more time in Advance() because of this.
 | ||||
|     g_slice_length = 0; | ||||
| } | ||||
| 
 | ||||
| void Advance() { | ||||
|     s64 cycles_executed = g_slice_length - down_count; | ||||
|     MoveEvents(); | ||||
| 
 | ||||
|     int cycles_executed = slice_length - downcount; | ||||
|     global_timer += cycles_executed; | ||||
|     down_count = g_slice_length; | ||||
|     slice_length = MAX_SLICE_LENGTH; | ||||
| 
 | ||||
|     if (has_ts_events) | ||||
|         MoveEvents(); | ||||
|     ProcessFifoWaitEvents(); | ||||
|     is_global_timer_sane = true; | ||||
| 
 | ||||
|     if (!first) { | ||||
|         if (g_slice_length < 10000) { | ||||
|             g_slice_length += 10000; | ||||
|             down_count += g_slice_length; | ||||
|         } | ||||
|     } else { | ||||
|         // Note that events can eat cycles as well.
 | ||||
|         int target = (int)(first->time - global_timer); | ||||
|         if (target > MAX_SLICE_LENGTH) | ||||
|             target = MAX_SLICE_LENGTH; | ||||
| 
 | ||||
|         const int diff = target - g_slice_length; | ||||
|         g_slice_length += diff; | ||||
|         down_count += diff; | ||||
|     } | ||||
|     if (advance_callback) | ||||
|         advance_callback(static_cast<int>(cycles_executed)); | ||||
| } | ||||
| 
 | ||||
| void LogPendingEvents() { | ||||
|     Event* event = first; | ||||
|     while (event) { | ||||
|         // LOG_TRACE(Core_Timing, "PENDING: Now: %lld Pending: %lld Type: %d", globalTimer,
 | ||||
|         // next->time, next->type);
 | ||||
|         event = event->next; | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| void Idle(int max_idle) { | ||||
|     s64 cycles_down = down_count; | ||||
|     if (max_idle != 0 && cycles_down > max_idle) | ||||
|         cycles_down = max_idle; | ||||
| 
 | ||||
|     if (first && cycles_down > 0) { | ||||
|         s64 cycles_executed = g_slice_length - down_count; | ||||
|         s64 cycles_next_event = first->time - global_timer; | ||||
| 
 | ||||
|         if (cycles_next_event < cycles_executed + cycles_down) { | ||||
|             cycles_down = cycles_next_event - cycles_executed; | ||||
|             // Now, now... no time machines, please.
 | ||||
|             if (cycles_down < 0) | ||||
|                 cycles_down = 0; | ||||
|         } | ||||
|     while (!event_queue.empty() && event_queue.front().time <= global_timer) { | ||||
|         Event evt = std::move(event_queue.front()); | ||||
|         std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<Event>()); | ||||
|         event_queue.pop_back(); | ||||
|         evt.type->callback(evt.userdata, global_timer - evt.time); | ||||
|     } | ||||
| 
 | ||||
|     LOG_TRACE(Core_Timing, "Idle for %" PRId64 " cycles! (%f ms)", cycles_down, | ||||
|               cycles_down / (float)(g_clock_rate_arm11 * 0.001f)); | ||||
|     is_global_timer_sane = false; | ||||
| 
 | ||||
|     idled_cycles += cycles_down; | ||||
|     down_count -= cycles_down; | ||||
|     if (down_count == 0) | ||||
|         down_count = -1; | ||||
| } | ||||
| 
 | ||||
| std::string GetScheduledEventsSummary() { | ||||
|     Event* event = first; | ||||
|     std::string text = "Scheduled events\n"; | ||||
|     text.reserve(1000); | ||||
|     while (event) { | ||||
|         unsigned int t = event->type; | ||||
|         if (t >= event_types.size()) | ||||
|             LOG_ERROR(Core_Timing, "Invalid event type"); // %i", t);
 | ||||
|         const char* name = event_types[event->type].name; | ||||
|         if (!name) | ||||
|             name = "[unknown]"; | ||||
|         text += Common::StringFromFormat("%s : %i %08x%08x\n", name, (int)event->time, | ||||
|                                          (u32)(event->userdata >> 32), (u32)(event->userdata)); | ||||
|         event = event->next; | ||||
|     // Still events left (scheduled in the future)
 | ||||
|     if (!event_queue.empty()) { | ||||
|         slice_length = static_cast<int>( | ||||
|             std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH)); | ||||
|     } | ||||
|     return text; | ||||
| 
 | ||||
|     downcount = slice_length; | ||||
| } | ||||
| 
 | ||||
| } // namespace
 | ||||
| void Idle() { | ||||
|     idled_cycles += downcount; | ||||
|     downcount = 0; | ||||
| } | ||||
| 
 | ||||
| u64 GetGlobalTimeUs() { | ||||
|     return GetTicks() * 1000000 / BASE_CLOCK_RATE_ARM11; | ||||
| } | ||||
| 
 | ||||
| int GetDowncount() { | ||||
|     return downcount; | ||||
| } | ||||
| 
 | ||||
| } // namespace CoreTiming
 | ||||
|  |  | |||
|  | @ -1,144 +1,191 @@ | |||
| // Copyright (c) 2012- PPSSPP Project / Dolphin Project.
 | ||||
| // Licensed under GPLv2 or any later version
 | ||||
| // Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
 | ||||
| // Licensed under GPLv2+
 | ||||
| // Refer to the license.txt file included.
 | ||||
| 
 | ||||
| #pragma once | ||||
| 
 | ||||
| /**
 | ||||
|  * This is a system to schedule events into the emulated machine's future. Time is measured | ||||
|  * in main CPU clock cycles. | ||||
|  * | ||||
|  * To schedule an event, you first have to register its type. This is where you pass in the | ||||
|  * callback. You then schedule events using the type id you get back. | ||||
|  * | ||||
|  * The int cyclesLate that the callbacks get is how many cycles late it was. | ||||
|  * So to schedule a new event on a regular basis: | ||||
|  * inside callback: | ||||
|  *   ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever") | ||||
|  */ | ||||
| 
 | ||||
| #include <functional> | ||||
| #include <limits> | ||||
| #include <string> | ||||
| #include "common/common_types.h" | ||||
| #include "common/logging/log.h" | ||||
| 
 | ||||
| // This is a system to schedule events into the emulated machine's future. Time is measured
 | ||||
| // in main CPU clock cycles.
 | ||||
| 
 | ||||
| // To schedule an event, you first have to register its type. This is where you pass in the
 | ||||
| // callback. You then schedule events using the type id you get back.
 | ||||
| 
 | ||||
| // See HW/SystemTimers.cpp for the main part of Dolphin's usage of this scheduler.
 | ||||
| 
 | ||||
| // The int cycles_late that the callbacks get is how many cycles late it was.
 | ||||
| // So to schedule a new event on a regular basis:
 | ||||
| // inside callback:
 | ||||
| //   ScheduleEvent(periodInCycles - cycles_late, callback, "whatever")
 | ||||
| 
 | ||||
| constexpr int BASE_CLOCK_RATE_ARM11 = 268123480; | ||||
| extern int g_clock_rate_arm11; | ||||
| // The timing we get from the assembly is 268,111,855.956 Hz
 | ||||
| // It is possible that this number isn't just an integer because the compiler could have
 | ||||
| // optimized the multiplication by a multiply-by-constant division.
 | ||||
| // Rounding to the nearest integer should be fine
 | ||||
| constexpr u64 BASE_CLOCK_RATE_ARM11 = 268111856; | ||||
| constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / BASE_CLOCK_RATE_ARM11; | ||||
| 
 | ||||
| inline s64 msToCycles(int ms) { | ||||
|     return (s64)g_clock_rate_arm11 / 1000 * ms; | ||||
|     // since ms is int there is no way to overflow
 | ||||
|     return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ms) / 1000; | ||||
| } | ||||
| 
 | ||||
| inline s64 msToCycles(float ms) { | ||||
|     return (s64)(g_clock_rate_arm11 * ms * (0.001f)); | ||||
|     return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001f) * ms); | ||||
| } | ||||
| 
 | ||||
| inline s64 msToCycles(double ms) { | ||||
|     return (s64)(g_clock_rate_arm11 * ms * (0.001)); | ||||
|     return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001) * ms); | ||||
| } | ||||
| 
 | ||||
| inline s64 usToCycles(float us) { | ||||
|     return (s64)(g_clock_rate_arm11 * us * (0.000001f)); | ||||
|     return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000001f) * us); | ||||
| } | ||||
| 
 | ||||
| inline s64 usToCycles(int us) { | ||||
|     return (g_clock_rate_arm11 / 1000000 * (s64)us); | ||||
|     return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us) / 1000000); | ||||
| } | ||||
| 
 | ||||
| inline s64 usToCycles(s64 us) { | ||||
|     return (g_clock_rate_arm11 / 1000000 * us); | ||||
|     if (us / 1000000 > MAX_VALUE_TO_MULTIPLY) { | ||||
|         LOG_ERROR(Core_Timing, "Integer overflow, use max value"); | ||||
|         return std::numeric_limits<s64>::max(); | ||||
|     } | ||||
|     if (us > MAX_VALUE_TO_MULTIPLY) { | ||||
|         LOG_DEBUG(Core_Timing, "Time very big, do rounding"); | ||||
|         return BASE_CLOCK_RATE_ARM11 * (us / 1000000); | ||||
|     } | ||||
|     return (BASE_CLOCK_RATE_ARM11 * us) / 1000000; | ||||
| } | ||||
| 
 | ||||
| inline s64 usToCycles(u64 us) { | ||||
|     return (s64)(g_clock_rate_arm11 / 1000000 * us); | ||||
|     if (us / 1000000 > MAX_VALUE_TO_MULTIPLY) { | ||||
|         LOG_ERROR(Core_Timing, "Integer overflow, use max value"); | ||||
|         return std::numeric_limits<s64>::max(); | ||||
|     } | ||||
|     if (us > MAX_VALUE_TO_MULTIPLY) { | ||||
|         LOG_DEBUG(Core_Timing, "Time very big, do rounding"); | ||||
|         return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us / 1000000); | ||||
|     } | ||||
|     return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us)) / 1000000; | ||||
| } | ||||
| 
 | ||||
| inline s64 nsToCycles(float ns) { | ||||
|     return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000000001f) * ns); | ||||
| } | ||||
| 
 | ||||
| inline s64 nsToCycles(int ns) { | ||||
|     return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns) / 1000000000; | ||||
| } | ||||
| 
 | ||||
| inline s64 nsToCycles(s64 ns) { | ||||
|     if (ns / 1000000000 > MAX_VALUE_TO_MULTIPLY) { | ||||
|         LOG_ERROR(Core_Timing, "Integer overflow, use max value"); | ||||
|         return std::numeric_limits<s64>::max(); | ||||
|     } | ||||
|     if (ns > MAX_VALUE_TO_MULTIPLY) { | ||||
|         LOG_DEBUG(Core_Timing, "Time very big, do rounding"); | ||||
|         return BASE_CLOCK_RATE_ARM11 * (ns / 1000000000); | ||||
|     } | ||||
|     return (BASE_CLOCK_RATE_ARM11 * ns) / 1000000000; | ||||
| } | ||||
| 
 | ||||
| inline s64 nsToCycles(u64 ns) { | ||||
|     if (ns / 1000000000 > MAX_VALUE_TO_MULTIPLY) { | ||||
|         LOG_ERROR(Core_Timing, "Integer overflow, use max value"); | ||||
|         return std::numeric_limits<s64>::max(); | ||||
|     } | ||||
|     if (ns > MAX_VALUE_TO_MULTIPLY) { | ||||
|         LOG_DEBUG(Core_Timing, "Time very big, do rounding"); | ||||
|         return BASE_CLOCK_RATE_ARM11 * (static_cast<s64>(ns) / 1000000000); | ||||
|     } | ||||
|     return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns)) / 1000000000; | ||||
| } | ||||
| 
 | ||||
| inline u64 cyclesToNs(s64 cycles) { | ||||
|     return cycles * 1000000000 / BASE_CLOCK_RATE_ARM11; | ||||
| } | ||||
| 
 | ||||
| inline s64 cyclesToUs(s64 cycles) { | ||||
|     return cycles / (g_clock_rate_arm11 / 1000000); | ||||
|     return cycles * 1000000 / BASE_CLOCK_RATE_ARM11; | ||||
| } | ||||
| 
 | ||||
| inline u64 cyclesToMs(s64 cycles) { | ||||
|     return cycles / (g_clock_rate_arm11 / 1000); | ||||
|     return cycles * 1000 / BASE_CLOCK_RATE_ARM11; | ||||
| } | ||||
| 
 | ||||
| namespace CoreTiming { | ||||
| 
 | ||||
| /**
 | ||||
|  * CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is | ||||
|  * required to end slice -1 and start slice 0 before the first cycle of code is executed. | ||||
|  */ | ||||
| void Init(); | ||||
| void Shutdown(); | ||||
| 
 | ||||
| typedef void (*MHzChangeCallback)(); | ||||
| typedef std::function<void(u64 userdata, int cycles_late)> TimedCallback; | ||||
| 
 | ||||
| /**
 | ||||
| * Advance the CPU core by the specified number of ticks (e.g. to simulate CPU execution time) | ||||
| * @param ticks Number of ticks to advance the CPU core | ||||
| */ | ||||
| void AddTicks(u64 ticks); | ||||
| 
 | ||||
|  * This should only be called from the emu thread, if you are calling it any other thread, you are | ||||
|  * doing something evil | ||||
|  */ | ||||
| u64 GetTicks(); | ||||
| u64 GetIdleTicks(); | ||||
| u64 GetGlobalTimeUs(); | ||||
| void AddTicks(u64 ticks); | ||||
| 
 | ||||
| struct EventType; | ||||
| 
 | ||||
| /**
 | ||||
|  * Registers an event type with the specified name and callback | ||||
|  * @param name Name of the event type | ||||
|  * @param callback Function that will execute when this event fires | ||||
|  * @returns An identifier for the event type that was registered | ||||
|  * Returns the event_type identifier. if name is not unique, it will assert. | ||||
|  */ | ||||
| int RegisterEvent(const char* name, TimedCallback callback); | ||||
| /// For save states.
 | ||||
| void RestoreRegisterEvent(int event_type, const char* name, TimedCallback callback); | ||||
| EventType* RegisterEvent(const std::string& name, TimedCallback callback); | ||||
| void UnregisterAllEvents(); | ||||
| 
 | ||||
| /// userdata MAY NOT CONTAIN POINTERS. userdata might get written and reloaded from disk,
 | ||||
| /// when we implement state saves.
 | ||||
| /**
 | ||||
|  * Schedules an event to run after the specified number of cycles, | ||||
|  * with an optional parameter to be passed to the callback handler. | ||||
|  * This must be run ONLY from within the cpu thread. | ||||
|  * @param cycles_into_future The number of cycles after which this event will be fired | ||||
|  * @param event_type The event type to fire, as returned from RegisterEvent | ||||
|  * @param userdata Optional parameter to pass to the callback when fired | ||||
|  * After the first Advance, the slice lengths and the downcount will be reduced whenever an event | ||||
|  * is scheduled earlier than the current values. | ||||
|  * Scheduling from a callback will not update the downcount until the Advance() completes. | ||||
|  */ | ||||
| void ScheduleEvent(s64 cycles_into_future, int event_type, u64 userdata = 0); | ||||
| 
 | ||||
| void ScheduleEvent_Threadsafe(s64 cycles_into_future, int event_type, u64 userdata = 0); | ||||
| void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata = 0); | ||||
| void ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 userdata = 0); | ||||
| 
 | ||||
| /**
 | ||||
|  * Unschedules an event with the specified type and userdata | ||||
|  * @param event_type The type of event to unschedule, as returned from RegisterEvent | ||||
|  * @param userdata The userdata that identifies this event, as passed to ScheduleEvent | ||||
|  * @returns The remaining ticks until the next invocation of the event callback | ||||
|  * This is to be called when outside of hle threads, such as the graphics thread, wants to | ||||
|  * schedule things to be executed on the main thread. | ||||
|  * Not that this doesn't change slice_length and thus events scheduled by this might be called | ||||
|  * with a delay of up to MAX_SLICE_LENGTH | ||||
|  */ | ||||
| s64 UnscheduleEvent(int event_type, u64 userdata); | ||||
| void ScheduleEventThreadsafe(s64 cycles_into_future, const EventType* event_type, u64 userdata); | ||||
| 
 | ||||
| s64 UnscheduleThreadsafeEvent(int event_type, u64 userdata); | ||||
| void UnscheduleEvent(const EventType* event_type, u64 userdata); | ||||
| 
 | ||||
| void RemoveEvent(int event_type); | ||||
| void RemoveThreadsafeEvent(int event_type); | ||||
| void RemoveAllEvents(int event_type); | ||||
| bool IsScheduled(int event_type); | ||||
| /// Runs any pending events and updates downcount for the next slice of cycles
 | ||||
| /// We only permit one event of each type in the queue at a time.
 | ||||
| void RemoveEvent(const EventType* event_type); | ||||
| void RemoveNormalAndThreadsafeEvent(const EventType* event_type); | ||||
| 
 | ||||
| /** Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends
 | ||||
|  * the previous timing slice and begins the next one, you must Advance from the previous | ||||
|  * slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an | ||||
|  * Advance() is required to initialize the slice length before the first cycle of emulated | ||||
|  * instructions is executed. | ||||
|  */ | ||||
| void Advance(); | ||||
| void MoveEvents(); | ||||
| void ProcessFifoWaitEvents(); | ||||
| void ForceCheck(); | ||||
| 
 | ||||
| /// Pretend that the main CPU has executed enough cycles to reach the next event.
 | ||||
| void Idle(int maxIdle = 0); | ||||
| void Idle(); | ||||
| 
 | ||||
| /// Clear all pending events. This should ONLY be done on exit or state load.
 | ||||
| /// Clear all pending events. This should ONLY be done on exit.
 | ||||
| void ClearPendingEvents(); | ||||
| 
 | ||||
| void LogPendingEvents(); | ||||
| void ForceExceptionCheck(s64 cycles); | ||||
| 
 | ||||
| /// Warning: not included in save states.
 | ||||
| void RegisterAdvanceCallback(void (*callback)(int cycles_executed)); | ||||
| void RegisterMHzChangeCallback(MHzChangeCallback callback); | ||||
| u64 GetGlobalTimeUs(); | ||||
| 
 | ||||
| std::string GetScheduledEventsSummary(); | ||||
| int GetDowncount(); | ||||
| 
 | ||||
| void SetClockFrequencyMHz(int cpu_mhz); | ||||
| int GetClockFrequencyMHz(); | ||||
| extern int g_slice_length; | ||||
| 
 | ||||
| } // namespace
 | ||||
| } // namespace CoreTiming
 | ||||
|  |  | |||
|  | @ -38,8 +38,8 @@ namespace HLE { | |||
| namespace Applets { | ||||
| 
 | ||||
| static std::unordered_map<Service::APT::AppletId, std::shared_ptr<Applet>> applets; | ||||
| static u32 applet_update_event = | ||||
|     -1; ///< The CoreTiming event identifier for the Applet update callback.
 | ||||
| /// The CoreTiming event identifier for the Applet update callback.
 | ||||
| static CoreTiming::EventType* applet_update_event = nullptr; | ||||
| /// The interval at which the Applet update callback will be called, 16.6ms
 | ||||
| static const u64 applet_update_interval_us = 16666; | ||||
| 
 | ||||
|  |  | |||
|  | @ -27,7 +27,7 @@ | |||
| namespace Kernel { | ||||
| 
 | ||||
| /// Event type for the thread wake up event
 | ||||
| static int ThreadWakeupEventType; | ||||
| static CoreTiming::EventType* ThreadWakeupEventType = nullptr; | ||||
| 
 | ||||
| bool Thread::ShouldWait(Thread* thread) const { | ||||
|     return status != THREADSTATUS_DEAD; | ||||
|  | @ -216,8 +216,7 @@ void Thread::WakeAfterDelay(s64 nanoseconds) { | |||
|     if (nanoseconds == -1) | ||||
|         return; | ||||
| 
 | ||||
|     u64 microseconds = nanoseconds / 1000; | ||||
|     CoreTiming::ScheduleEvent(usToCycles(microseconds), ThreadWakeupEventType, callback_handle); | ||||
|     CoreTiming::ScheduleEvent(nsToCycles(nanoseconds), ThreadWakeupEventType, callback_handle); | ||||
| } | ||||
| 
 | ||||
| void Thread::ResumeFromWait() { | ||||
|  |  | |||
|  | @ -14,7 +14,7 @@ | |||
| namespace Kernel { | ||||
| 
 | ||||
| /// The event type of the generic timer callback event
 | ||||
| static int timer_callback_event_type; | ||||
| static CoreTiming::EventType* timer_callback_event_type = nullptr; | ||||
| // TODO(yuriks): This can be removed if Timer objects are explicitly pooled in the future, allowing
 | ||||
| //               us to simply use a pool index or similar.
 | ||||
| static Kernel::HandleTable timer_callback_handle_table; | ||||
|  | @ -57,9 +57,7 @@ void Timer::Set(s64 initial, s64 interval) { | |||
|         // Immediately invoke the callback
 | ||||
|         Signal(0); | ||||
|     } else { | ||||
|         u64 initial_microseconds = initial / 1000; | ||||
|         CoreTiming::ScheduleEvent(usToCycles(initial_microseconds), timer_callback_event_type, | ||||
|                                   callback_handle); | ||||
|         CoreTiming::ScheduleEvent(nsToCycles(initial), timer_callback_event_type, callback_handle); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
|  | @ -88,8 +86,7 @@ void Timer::Signal(int cycles_late) { | |||
| 
 | ||||
|     if (interval_delay != 0) { | ||||
|         // Reschedule the timer with the interval delay
 | ||||
|         u64 interval_microseconds = interval_delay / 1000; | ||||
|         CoreTiming::ScheduleEvent(usToCycles(interval_microseconds) - cycles_late, | ||||
|         CoreTiming::ScheduleEvent(nsToCycles(interval_delay) - cycles_late, | ||||
|                                   timer_callback_event_type, callback_handle); | ||||
|     } | ||||
| } | ||||
|  |  | |||
|  | @ -117,7 +117,7 @@ constexpr std::array<int, 13> LATENCY_BY_FRAME_RATE{{ | |||
| 
 | ||||
| std::array<CameraConfig, NumCameras> cameras; | ||||
| std::array<PortConfig, 2> ports; | ||||
| int completion_event_callback; | ||||
| CoreTiming::EventType* completion_event_callback; | ||||
| 
 | ||||
| const ResultCode ERROR_INVALID_ENUM_VALUE(ErrorDescription::InvalidEnumValue, ErrorModule::CAM, | ||||
|                                           ErrorSummary::InvalidArgument, ErrorLevel::Usage); | ||||
|  |  | |||
|  | @ -41,9 +41,9 @@ static u32 next_gyroscope_index; | |||
| static int enable_accelerometer_count; // positive means enabled
 | ||||
| static int enable_gyroscope_count;     // positive means enabled
 | ||||
| 
 | ||||
| static int pad_update_event; | ||||
| static int accelerometer_update_event; | ||||
| static int gyroscope_update_event; | ||||
| static CoreTiming::EventType* pad_update_event; | ||||
| static CoreTiming::EventType* accelerometer_update_event; | ||||
| static CoreTiming::EventType* gyroscope_update_event; | ||||
| 
 | ||||
| // Updating period for each HID device. These empirical values are measured from a 11.2 3DS.
 | ||||
| constexpr u64 pad_update_ticks = BASE_CLOCK_RATE_ARM11 / 234; | ||||
|  |  | |||
|  | @ -9,6 +9,10 @@ | |||
| #include "core/frontend/input.h" | ||||
| #include "core/hle/service/ir/ir_user.h" | ||||
| 
 | ||||
| namespace CoreTiming { | ||||
| struct EventType; | ||||
| } // namespace CoreTiming
 | ||||
| 
 | ||||
| namespace Service { | ||||
| namespace IR { | ||||
| 
 | ||||
|  | @ -36,7 +40,7 @@ private: | |||
|     void LoadInputDevices(); | ||||
| 
 | ||||
|     u8 hid_period; | ||||
|     int hid_polling_callback_id; | ||||
|     CoreTiming::EventType* hid_polling_callback_id; | ||||
|     std::array<u8, 0x40> calibration_data; | ||||
|     std::unique_ptr<Input::ButtonDevice> zl; | ||||
|     std::unique_ptr<Input::ButtonDevice> zr; | ||||
|  |  | |||
|  | @ -51,7 +51,7 @@ static_assert(sizeof(SharedMem) == 0x98, "SharedMem has wrong size!"); | |||
| static Kernel::SharedPtr<Kernel::Event> update_event; | ||||
| static Kernel::SharedPtr<Kernel::SharedMemory> shared_memory; | ||||
| static u32 next_pad_index; | ||||
| static int update_callback_id; | ||||
| static CoreTiming::EventType* update_callback_id; | ||||
| static std::unique_ptr<Input::ButtonDevice> zl_button; | ||||
| static std::unique_ptr<Input::ButtonDevice> zr_button; | ||||
| static std::unique_ptr<Input::AnalogDevice> c_stick; | ||||
|  |  | |||
|  | @ -76,7 +76,7 @@ static u8 network_channel = DefaultNetworkChannel; | |||
| static NetworkInfo network_info; | ||||
| 
 | ||||
| // Event that will generate and send the 802.11 beacon frames.
 | ||||
| static int beacon_broadcast_event; | ||||
| static CoreTiming::EventType* beacon_broadcast_event; | ||||
| 
 | ||||
| // Mutex to synchronize access to the connection status between the emulation thread and the
 | ||||
| // network thread.
 | ||||
|  |  | |||
|  | @ -15,7 +15,7 @@ namespace SharedPage { | |||
| 
 | ||||
| SharedPageDef shared_page; | ||||
| 
 | ||||
| static int update_time_event; | ||||
| static CoreTiming::EventType* update_time_event; | ||||
| 
 | ||||
| /// Gets system time in 3DS format. The epoch is Jan 1900, and the unit is millisecond.
 | ||||
| static u64 GetSystemTime() { | ||||
|  | @ -57,7 +57,7 @@ static void UpdateTimeCallback(u64 userdata, int cycles_late) { | |||
| 
 | ||||
|     date_time.date_time = GetSystemTime(); | ||||
|     date_time.update_tick = CoreTiming::GetTicks(); | ||||
|     date_time.tick_to_second_coefficient = g_clock_rate_arm11; | ||||
|     date_time.tick_to_second_coefficient = BASE_CLOCK_RATE_ARM11; | ||||
|     date_time.tick_offset = 0; | ||||
| 
 | ||||
|     ++shared_page.date_time_counter; | ||||
|  |  | |||
|  | @ -31,7 +31,7 @@ Regs g_regs; | |||
| /// 268MHz CPU clocks / 60Hz frames per second
 | ||||
| const u64 frame_ticks = static_cast<u64>(BASE_CLOCK_RATE_ARM11 / SCREEN_REFRESH_RATE); | ||||
| /// Event id for CoreTiming
 | ||||
| static int vblank_event; | ||||
| static CoreTiming::EventType* vblank_event; | ||||
| 
 | ||||
| template <typename T> | ||||
| inline void Read(T& var, const u32 raw_addr) { | ||||
|  |  | |||
|  | @ -2,6 +2,7 @@ set(SRCS | |||
|             common/param_package.cpp | ||||
|             core/arm/arm_test_common.cpp | ||||
|             core/arm/dyncom/arm_dyncom_vfp_tests.cpp | ||||
|             core/core_timing.cpp | ||||
|             core/file_sys/path_parser.cpp | ||||
|             core/hle/kernel/hle_ipc.cpp | ||||
|             core/memory/memory.cpp | ||||
|  |  | |||
							
								
								
									
										237
									
								
								src/tests/core/core_timing.cpp
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										237
									
								
								src/tests/core/core_timing.cpp
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,237 @@ | |||
| // Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project
 | ||||
| // Licensed under GPLv2+
 | ||||
| // Refer to the license.txt file included.
 | ||||
| 
 | ||||
| #include <catch.hpp> | ||||
| 
 | ||||
| #include <array> | ||||
| #include <bitset> | ||||
| #include <string> | ||||
| #include "common/file_util.h" | ||||
| #include "core/core.h" | ||||
| #include "core/core_timing.h" | ||||
| 
 | ||||
| // Numbers are chosen randomly to make sure the correct one is given.
 | ||||
| static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}}; | ||||
| static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals
 | ||||
| 
 | ||||
| static std::bitset<CB_IDS.size()> callbacks_ran_flags; | ||||
| static u64 expected_callback = 0; | ||||
| static s64 lateness = 0; | ||||
| 
 | ||||
| template <unsigned int IDX> | ||||
| void CallbackTemplate(u64 userdata, s64 cycles_late) { | ||||
|     static_assert(IDX < CB_IDS.size(), "IDX out of range"); | ||||
|     callbacks_ran_flags.set(IDX); | ||||
|     REQUIRE(CB_IDS[IDX] == userdata); | ||||
|     REQUIRE(CB_IDS[IDX] == expected_callback); | ||||
|     REQUIRE(lateness == cycles_late); | ||||
| } | ||||
| 
 | ||||
| class ScopeInit final { | ||||
| public: | ||||
|     ScopeInit() { | ||||
|         CoreTiming::Init(); | ||||
|     } | ||||
|     ~ScopeInit() { | ||||
|         CoreTiming::Shutdown(); | ||||
|     } | ||||
| }; | ||||
| 
 | ||||
| static void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0, | ||||
|                             int cpu_downcount = 0) { | ||||
|     callbacks_ran_flags = 0; | ||||
|     expected_callback = CB_IDS[idx]; | ||||
|     lateness = expected_lateness; | ||||
| 
 | ||||
|     CoreTiming::AddTicks(CoreTiming::GetDowncount() - | ||||
|                          cpu_downcount); // Pretend we executed X cycles of instructions.
 | ||||
|     CoreTiming::Advance(); | ||||
| 
 | ||||
|     REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags); | ||||
|     REQUIRE(downcount == CoreTiming::GetDowncount()); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("CoreTiming[BasicOrder]", "[core]") { | ||||
|     ScopeInit guard; | ||||
| 
 | ||||
|     CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); | ||||
|     CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); | ||||
|     CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); | ||||
|     CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); | ||||
|     CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); | ||||
| 
 | ||||
|     // Enter slice 0
 | ||||
|     CoreTiming::Advance(); | ||||
| 
 | ||||
|     // D -> B -> C -> A -> E
 | ||||
|     CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]); | ||||
|     REQUIRE(1000 == CoreTiming::GetDowncount()); | ||||
|     CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]); | ||||
|     REQUIRE(500 == CoreTiming::GetDowncount()); | ||||
|     CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]); | ||||
|     REQUIRE(500 == CoreTiming::GetDowncount()); | ||||
|     CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]); | ||||
|     REQUIRE(100 == CoreTiming::GetDowncount()); | ||||
|     CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]); | ||||
|     REQUIRE(100 == CoreTiming::GetDowncount()); | ||||
| 
 | ||||
|     AdvanceAndCheck(3, 400); | ||||
|     AdvanceAndCheck(1, 300); | ||||
|     AdvanceAndCheck(2, 200); | ||||
|     AdvanceAndCheck(0, 200); | ||||
|     AdvanceAndCheck(4, MAX_SLICE_LENGTH); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("CoreTiming[Threadsave]", "[core]") { | ||||
|     ScopeInit guard; | ||||
| 
 | ||||
|     CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); | ||||
|     CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); | ||||
|     CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); | ||||
|     CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); | ||||
|     CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); | ||||
| 
 | ||||
|     // Enter slice 0
 | ||||
|     CoreTiming::Advance(); | ||||
| 
 | ||||
|     // D -> B -> C -> A -> E
 | ||||
|     CoreTiming::ScheduleEventThreadsafe(1000, cb_a, CB_IDS[0]); | ||||
|     // Manually force since ScheduleEventThreadsafe doesn't call it
 | ||||
|     CoreTiming::ForceExceptionCheck(1000); | ||||
|     REQUIRE(1000 == CoreTiming::GetDowncount()); | ||||
|     CoreTiming::ScheduleEventThreadsafe(500, cb_b, CB_IDS[1]); | ||||
|     // Manually force since ScheduleEventThreadsafe doesn't call it
 | ||||
|     CoreTiming::ForceExceptionCheck(500); | ||||
|     REQUIRE(500 == CoreTiming::GetDowncount()); | ||||
|     CoreTiming::ScheduleEventThreadsafe(800, cb_c, CB_IDS[2]); | ||||
|     // Manually force since ScheduleEventThreadsafe doesn't call it
 | ||||
|     CoreTiming::ForceExceptionCheck(800); | ||||
|     REQUIRE(500 == CoreTiming::GetDowncount()); | ||||
|     CoreTiming::ScheduleEventThreadsafe(100, cb_d, CB_IDS[3]); | ||||
|     // Manually force since ScheduleEventThreadsafe doesn't call it
 | ||||
|     CoreTiming::ForceExceptionCheck(100); | ||||
|     REQUIRE(100 == CoreTiming::GetDowncount()); | ||||
|     CoreTiming::ScheduleEventThreadsafe(1200, cb_e, CB_IDS[4]); | ||||
|     // Manually force since ScheduleEventThreadsafe doesn't call it
 | ||||
|     CoreTiming::ForceExceptionCheck(1200); | ||||
|     REQUIRE(100 == CoreTiming::GetDowncount()); | ||||
| 
 | ||||
|     AdvanceAndCheck(3, 400); | ||||
|     AdvanceAndCheck(1, 300); | ||||
|     AdvanceAndCheck(2, 200); | ||||
|     AdvanceAndCheck(0, 200); | ||||
|     AdvanceAndCheck(4, MAX_SLICE_LENGTH); | ||||
| } | ||||
| 
 | ||||
| namespace SharedSlotTest { | ||||
| static unsigned int counter = 0; | ||||
| 
 | ||||
| template <unsigned int ID> | ||||
| void FifoCallback(u64 userdata, s64 cycles_late) { | ||||
|     static_assert(ID < CB_IDS.size(), "ID out of range"); | ||||
|     callbacks_ran_flags.set(ID); | ||||
|     REQUIRE(CB_IDS[ID] == userdata); | ||||
|     REQUIRE(ID == counter); | ||||
|     REQUIRE(lateness == cycles_late); | ||||
|     ++counter; | ||||
| } | ||||
| } // namespace SharedSlotTest
 | ||||
| 
 | ||||
| TEST_CASE("CoreTiming[SharedSlot]", "[core]") { | ||||
|     using namespace SharedSlotTest; | ||||
| 
 | ||||
|     ScopeInit guard; | ||||
| 
 | ||||
|     CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", FifoCallback<0>); | ||||
|     CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", FifoCallback<1>); | ||||
|     CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", FifoCallback<2>); | ||||
|     CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", FifoCallback<3>); | ||||
|     CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", FifoCallback<4>); | ||||
| 
 | ||||
|     CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]); | ||||
|     CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]); | ||||
|     CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]); | ||||
|     CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]); | ||||
|     CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]); | ||||
| 
 | ||||
|     // Enter slice 0
 | ||||
|     CoreTiming::Advance(); | ||||
|     REQUIRE(1000 == CoreTiming::GetDowncount()); | ||||
| 
 | ||||
|     callbacks_ran_flags = 0; | ||||
|     counter = 0; | ||||
|     lateness = 0; | ||||
|     CoreTiming::AddTicks(CoreTiming::GetDowncount()); | ||||
|     CoreTiming::Advance(); | ||||
|     REQUIRE(MAX_SLICE_LENGTH == CoreTiming::GetDowncount()); | ||||
|     REQUIRE(0x1FULL == callbacks_ran_flags.to_ullong()); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("CoreTiming[PredictableLateness]", "[core]") { | ||||
|     ScopeInit guard; | ||||
| 
 | ||||
|     CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); | ||||
|     CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); | ||||
| 
 | ||||
|     // Enter slice 0
 | ||||
|     CoreTiming::Advance(); | ||||
| 
 | ||||
|     CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); | ||||
|     CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); | ||||
| 
 | ||||
|     AdvanceAndCheck(0, 90, 10, -10); // (100 - 10)
 | ||||
|     AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50); | ||||
| } | ||||
| 
 | ||||
| namespace ChainSchedulingTest { | ||||
| static int reschedules = 0; | ||||
| 
 | ||||
| static void RescheduleCallback(u64 userdata, s64 cycles_late) { | ||||
|     --reschedules; | ||||
|     REQUIRE(reschedules >= 0); | ||||
|     REQUIRE(lateness == cycles_late); | ||||
| 
 | ||||
|     if (reschedules > 0) | ||||
|         CoreTiming::ScheduleEvent(1000, reinterpret_cast<CoreTiming::EventType*>(userdata), | ||||
|                                   userdata); | ||||
| } | ||||
| } // namespace ChainSchedulingTest
 | ||||
| 
 | ||||
| TEST_CASE("CoreTiming[ChainScheduling]", "[core]") { | ||||
|     using namespace ChainSchedulingTest; | ||||
| 
 | ||||
|     ScopeInit guard; | ||||
| 
 | ||||
|     CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); | ||||
|     CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); | ||||
|     CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); | ||||
|     CoreTiming::EventType* cb_rs = | ||||
|         CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback); | ||||
| 
 | ||||
|     // Enter slice 0
 | ||||
|     CoreTiming::Advance(); | ||||
| 
 | ||||
|     CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]); | ||||
|     CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]); | ||||
|     CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]); | ||||
|     CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs)); | ||||
|     REQUIRE(800 == CoreTiming::GetDowncount()); | ||||
| 
 | ||||
|     reschedules = 3; | ||||
|     AdvanceAndCheck(0, 200);  // cb_a
 | ||||
|     AdvanceAndCheck(1, 1000); // cb_b, cb_rs
 | ||||
|     REQUIRE(2 == reschedules); | ||||
| 
 | ||||
|     CoreTiming::AddTicks(CoreTiming::GetDowncount()); | ||||
|     CoreTiming::Advance(); // cb_rs
 | ||||
|     REQUIRE(1 == reschedules); | ||||
|     REQUIRE(200 == CoreTiming::GetDowncount()); | ||||
| 
 | ||||
|     AdvanceAndCheck(2, 800); // cb_c
 | ||||
| 
 | ||||
|     CoreTiming::AddTicks(CoreTiming::GetDowncount()); | ||||
|     CoreTiming::Advance(); // cb_rs
 | ||||
|     REQUIRE(0 == reschedules); | ||||
|     REQUIRE(MAX_SLICE_LENGTH == CoreTiming::GetDowncount()); | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue