mirror of
				https://github.com/PabloMK7/citra.git
				synced 2025-10-31 05:40:04 +00:00 
			
		
		
		
	renderer_software: Multi-thread processing (#6698)
* renderer_software: Multi-thread processing * Doubles the performance in most cases * renderer_software: Move memory access out of the raster loop * Profiling shows this has a significant impact
This commit is contained in:
		
							parent
							
								
									8b218e1b7d
								
							
						
					
					
						commit
						d1f600601d
					
				
					 4 changed files with 201 additions and 181 deletions
				
			
		|  | @ -41,10 +41,22 @@ Framebuffer::Framebuffer(Memory::MemorySystem& memory_, const Pica::FramebufferR | |||
| 
 | ||||
| Framebuffer::~Framebuffer() = default; | ||||
| 
 | ||||
| void Framebuffer::DrawPixel(int x, int y, const Common::Vec4<u8>& color) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetColorBufferPhysicalAddress(); | ||||
| void Framebuffer::Bind() { | ||||
|     PAddr addr = regs.framebuffer.GetColorBufferPhysicalAddress(); | ||||
|     if (color_addr != addr) [[unlikely]] { | ||||
|         color_addr = addr; | ||||
|         color_buffer = memory.GetPhysicalPointer(color_addr); | ||||
|     } | ||||
| 
 | ||||
|     addr = regs.framebuffer.GetDepthBufferPhysicalAddress(); | ||||
|     if (depth_addr != addr) [[unlikely]] { | ||||
|         depth_addr = addr; | ||||
|         depth_buffer = memory.GetPhysicalPointer(depth_addr); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| void Framebuffer::DrawPixel(u32 x, u32 y, const Common::Vec4<u8>& color) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     // Similarly to textures, the render framebuffer is laid out from bottom to top, too.
 | ||||
|     // NOTE: The framebuffer height register contains the actual FB height minus one.
 | ||||
|     y = framebuffer.height - y; | ||||
|  | @ -54,8 +66,7 @@ void Framebuffer::DrawPixel(int x, int y, const Common::Vec4<u8>& color) const { | |||
|         GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value())); | ||||
|     const u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + | ||||
|                            coarse_y * framebuffer.width * bytes_per_pixel; | ||||
|     u8* depth_buffer = memory.GetPhysicalPointer(addr); | ||||
|     u8* dst_pixel = depth_buffer + dst_offset; | ||||
|     u8* dst_pixel = color_buffer + dst_offset; | ||||
| 
 | ||||
|     switch (framebuffer.color_format) { | ||||
|     case FramebufferRegs::ColorFormat::RGBA8: | ||||
|  | @ -80,10 +91,8 @@ void Framebuffer::DrawPixel(int x, int y, const Common::Vec4<u8>& color) const { | |||
|     } | ||||
| } | ||||
| 
 | ||||
| const Common::Vec4<u8> Framebuffer::GetPixel(int x, int y) const { | ||||
| const Common::Vec4<u8> Framebuffer::GetPixel(u32 x, u32 y) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetColorBufferPhysicalAddress(); | ||||
| 
 | ||||
|     y = framebuffer.height - y; | ||||
| 
 | ||||
|     const u32 coarse_y = y & ~7; | ||||
|  | @ -91,7 +100,6 @@ const Common::Vec4<u8> Framebuffer::GetPixel(int x, int y) const { | |||
|         GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value())); | ||||
|     const u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + | ||||
|                            coarse_y * framebuffer.width * bytes_per_pixel; | ||||
|     const u8* color_buffer = memory.GetPhysicalPointer(addr); | ||||
|     const u8* src_pixel = color_buffer + src_offset; | ||||
| 
 | ||||
|     switch (framebuffer.color_format) { | ||||
|  | @ -114,10 +122,8 @@ const Common::Vec4<u8> Framebuffer::GetPixel(int x, int y) const { | |||
|     return {0, 0, 0, 0}; | ||||
| } | ||||
| 
 | ||||
| u32 Framebuffer::GetDepth(int x, int y) const { | ||||
| u32 Framebuffer::GetDepth(u32 x, u32 y) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||||
| 
 | ||||
|     y = framebuffer.height - y; | ||||
| 
 | ||||
|     const u32 coarse_y = y & ~7; | ||||
|  | @ -125,7 +131,6 @@ u32 Framebuffer::GetDepth(int x, int y) const { | |||
|     const u32 stride = framebuffer.width * bytes_per_pixel; | ||||
| 
 | ||||
|     const u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||||
|     const u8* depth_buffer = memory.GetPhysicalPointer(addr); | ||||
|     const u8* src_pixel = depth_buffer + src_offset; | ||||
| 
 | ||||
|     switch (framebuffer.depth_format) { | ||||
|  | @ -143,10 +148,8 @@ u32 Framebuffer::GetDepth(int x, int y) const { | |||
|     } | ||||
| } | ||||
| 
 | ||||
| u8 Framebuffer::GetStencil(int x, int y) const { | ||||
| u8 Framebuffer::GetStencil(u32 x, u32 y) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||||
| 
 | ||||
|     y = framebuffer.height - y; | ||||
| 
 | ||||
|     const u32 coarse_y = y & ~7; | ||||
|  | @ -154,7 +157,6 @@ u8 Framebuffer::GetStencil(int x, int y) const { | |||
|     const u32 stride = framebuffer.width * bytes_per_pixel; | ||||
| 
 | ||||
|     const u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||||
|     const u8* depth_buffer = memory.GetPhysicalPointer(addr); | ||||
|     const u8* src_pixel = depth_buffer + src_offset; | ||||
| 
 | ||||
|     switch (framebuffer.depth_format) { | ||||
|  | @ -169,10 +171,8 @@ u8 Framebuffer::GetStencil(int x, int y) const { | |||
|     } | ||||
| } | ||||
| 
 | ||||
| void Framebuffer::SetDepth(int x, int y, u32 value) const { | ||||
| void Framebuffer::SetDepth(u32 x, u32 y, u32 value) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||||
| 
 | ||||
|     y = framebuffer.height - y; | ||||
| 
 | ||||
|     const u32 coarse_y = y & ~7; | ||||
|  | @ -180,7 +180,6 @@ void Framebuffer::SetDepth(int x, int y, u32 value) const { | |||
|     const u32 stride = framebuffer.width * bytes_per_pixel; | ||||
| 
 | ||||
|     const u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||||
|     u8* depth_buffer = memory.GetPhysicalPointer(addr); | ||||
|     u8* dst_pixel = depth_buffer + dst_offset; | ||||
| 
 | ||||
|     switch (framebuffer.depth_format) { | ||||
|  | @ -201,10 +200,8 @@ void Framebuffer::SetDepth(int x, int y, u32 value) const { | |||
|     } | ||||
| } | ||||
| 
 | ||||
| void Framebuffer::SetStencil(int x, int y, u8 value) const { | ||||
| void Framebuffer::SetStencil(u32 x, u32 y, u8 value) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||||
| 
 | ||||
|     y = framebuffer.height - y; | ||||
| 
 | ||||
|     const u32 coarse_y = y & ~7; | ||||
|  | @ -212,7 +209,6 @@ void Framebuffer::SetStencil(int x, int y, u8 value) const { | |||
|     const u32 stride = framebuffer.width * bytes_per_pixel; | ||||
| 
 | ||||
|     const u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||||
|     u8* depth_buffer = memory.GetPhysicalPointer(addr); | ||||
|     u8* dst_pixel = depth_buffer + dst_offset; | ||||
| 
 | ||||
|     switch (framebuffer.depth_format) { | ||||
|  | @ -231,7 +227,7 @@ void Framebuffer::SetStencil(int x, int y, u8 value) const { | |||
|     } | ||||
| } | ||||
| 
 | ||||
| void Framebuffer::DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil) const { | ||||
| void Framebuffer::DrawShadowMapPixel(u32 x, u32 y, u32 depth, u8 stencil) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const auto& shadow = regs.shadow; | ||||
|     const PAddr addr = framebuffer.GetColorBufferPhysicalAddress(); | ||||
|  |  | |||
|  | @ -23,30 +23,37 @@ public: | |||
|     explicit Framebuffer(Memory::MemorySystem& memory, const Pica::FramebufferRegs& framebuffer); | ||||
|     ~Framebuffer(); | ||||
| 
 | ||||
|     /// Updates the framebuffer addresses from the PICA registers.
 | ||||
|     void Bind(); | ||||
| 
 | ||||
|     /// Draws a pixel at the specified coordinates.
 | ||||
|     void DrawPixel(int x, int y, const Common::Vec4<u8>& color) const; | ||||
|     void DrawPixel(u32 x, u32 y, const Common::Vec4<u8>& color) const; | ||||
| 
 | ||||
|     /// Returns the current color at the specified coordinates.
 | ||||
|     [[nodiscard]] const Common::Vec4<u8> GetPixel(int x, int y) const; | ||||
|     [[nodiscard]] const Common::Vec4<u8> GetPixel(u32 x, u32 y) const; | ||||
| 
 | ||||
|     /// Returns the depth value at the specified coordinates.
 | ||||
|     [[nodiscard]] u32 GetDepth(int x, int y) const; | ||||
|     [[nodiscard]] u32 GetDepth(u32 x, u32 y) const; | ||||
| 
 | ||||
|     /// Returns the stencil value at the specified coordinates.
 | ||||
|     [[nodiscard]] u8 GetStencil(int x, int y) const; | ||||
|     [[nodiscard]] u8 GetStencil(u32 x, u32 y) const; | ||||
| 
 | ||||
|     /// Stores the provided depth value at the specified coordinates.
 | ||||
|     void SetDepth(int x, int y, u32 value) const; | ||||
|     void SetDepth(u32 x, u32 y, u32 value) const; | ||||
| 
 | ||||
|     /// Stores the provided stencil value at the specified coordinates.
 | ||||
|     void SetStencil(int x, int y, u8 value) const; | ||||
|     void SetStencil(u32 x, u32 y, u8 value) const; | ||||
| 
 | ||||
|     /// Draws a pixel to the shadow buffer.
 | ||||
|     void DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil) const; | ||||
|     void DrawShadowMapPixel(u32 x, u32 y, u32 depth, u8 stencil) const; | ||||
| 
 | ||||
| private: | ||||
|     Memory::MemorySystem& memory; | ||||
|     const Pica::FramebufferRegs& regs; | ||||
|     PAddr color_addr; | ||||
|     u8* color_buffer{}; | ||||
|     PAddr depth_addr; | ||||
|     u8* depth_buffer{}; | ||||
| }; | ||||
| 
 | ||||
| u8 PerformStencilAction(Pica::FramebufferRegs::StencilAction action, u8 old_stencil, u8 ref); | ||||
|  |  | |||
|  | @ -96,7 +96,9 @@ private: | |||
| } // Anonymous namespace
 | ||||
| 
 | ||||
| RasterizerSoftware::RasterizerSoftware(Memory::MemorySystem& memory_) | ||||
|     : memory{memory_}, state{Pica::g_state}, regs{state.regs}, fb{memory, regs.framebuffer} {} | ||||
|     : memory{memory_}, state{Pica::g_state}, regs{state.regs}, | ||||
|       num_sw_threads{std::max(std::thread::hardware_concurrency(), 2U)}, | ||||
|       sw_workers{num_sw_threads, "SwRenderer workers"}, fb{memory, regs.framebuffer} {} | ||||
| 
 | ||||
| void RasterizerSoftware::AddTriangle(const Pica::Shader::OutputVertex& v0, | ||||
|                                      const Pica::Shader::OutputVertex& v1, | ||||
|  | @ -289,167 +291,180 @@ void RasterizerSoftware::ProcessTriangle(const Vertex& v0, const Vertex& v1, con | |||
| 
 | ||||
|     const auto w_inverse = Common::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w); | ||||
| 
 | ||||
|     auto textures = regs.texturing.GetTextures(); | ||||
|     const auto textures = regs.texturing.GetTextures(); | ||||
|     const auto tev_stages = regs.texturing.GetTevStages(); | ||||
| 
 | ||||
|     fb.Bind(); | ||||
| 
 | ||||
|     // Enter rasterization loop, starting at the center of the topleft bounding box corner.
 | ||||
|     // TODO: Not sure if looping through x first might be faster
 | ||||
|     for (u16 y = min_y + 8; y < max_y; y += 0x10) { | ||||
|         for (u16 x = min_x + 8; x < max_x; x += 0x10) { | ||||
|             // Do not process the pixel if it's inside the scissor box and the scissor mode is set
 | ||||
|             // to Exclude.
 | ||||
|             if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) { | ||||
|                 if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) { | ||||
|         const auto process_scanline = [&, y] { | ||||
|             for (u16 x = min_x + 8; x < max_x; x += 0x10) { | ||||
|                 // Do not process the pixel if it's inside the scissor box and the scissor mode is
 | ||||
|                 // set to Exclude.
 | ||||
|                 if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) { | ||||
|                     if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) { | ||||
|                         continue; | ||||
|                     } | ||||
|                 } | ||||
| 
 | ||||
|                 // Calculate the barycentric coordinates w0, w1 and w2
 | ||||
|                 const s32 w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); | ||||
|                 const s32 w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); | ||||
|                 const s32 w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); | ||||
|                 const s32 wsum = w0 + w1 + w2; | ||||
| 
 | ||||
|                 // If current pixel is not covered by the current primitive
 | ||||
|                 if (w0 < 0 || w1 < 0 || w2 < 0) { | ||||
|                     continue; | ||||
|                 } | ||||
|             } | ||||
| 
 | ||||
|             // Calculate the barycentric coordinates w0, w1 and w2
 | ||||
|             const s32 w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); | ||||
|             const s32 w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); | ||||
|             const s32 w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); | ||||
|             const s32 wsum = w0 + w1 + w2; | ||||
|                 const auto baricentric_coordinates = Common::MakeVec( | ||||
|                     f24::FromFloat32(static_cast<f32>(w0)), f24::FromFloat32(static_cast<f32>(w1)), | ||||
|                     f24::FromFloat32(static_cast<f32>(w2))); | ||||
|                 const f24 interpolated_w_inverse = | ||||
|                     f24::One() / Common::Dot(w_inverse, baricentric_coordinates); | ||||
| 
 | ||||
|             // If current pixel is not covered by the current primitive
 | ||||
|             if (w0 < 0 || w1 < 0 || w2 < 0) { | ||||
|                 continue; | ||||
|             } | ||||
|                 // interpolated_z = z / w
 | ||||
|                 const float interpolated_z_over_w = | ||||
|                     (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + | ||||
|                      v2.screenpos[2].ToFloat32() * w2) / | ||||
|                     wsum; | ||||
| 
 | ||||
|             const auto baricentric_coordinates = Common::MakeVec( | ||||
|                 f24::FromFloat32(static_cast<f32>(w0)), f24::FromFloat32(static_cast<f32>(w1)), | ||||
|                 f24::FromFloat32(static_cast<f32>(w2))); | ||||
|             const f24 interpolated_w_inverse = | ||||
|                 f24::One() / Common::Dot(w_inverse, baricentric_coordinates); | ||||
|                 // Not fully accurate. About 3 bits in precision are missing.
 | ||||
|                 // Z-Buffer (z / w * scale + offset)
 | ||||
|                 const float depth_scale = | ||||
|                     f24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32(); | ||||
|                 const float depth_offset = | ||||
|                     f24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32(); | ||||
|                 float depth = interpolated_z_over_w * depth_scale + depth_offset; | ||||
| 
 | ||||
|             // interpolated_z = z / w
 | ||||
|             const float interpolated_z_over_w = | ||||
|                 (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + | ||||
|                  v2.screenpos[2].ToFloat32() * w2) / | ||||
|                 wsum; | ||||
|                 // Potentially switch to W-Buffer
 | ||||
|                 if (regs.rasterizer.depthmap_enable == | ||||
|                     Pica::RasterizerRegs::DepthBuffering::WBuffering) { | ||||
|                     // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w)
 | ||||
|                     depth *= interpolated_w_inverse.ToFloat32() * wsum; | ||||
|                 } | ||||
| 
 | ||||
|             // Not fully accurate. About 3 bits in precision are missing.
 | ||||
|             // Z-Buffer (z / w * scale + offset)
 | ||||
|             const float depth_scale = | ||||
|                 f24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32(); | ||||
|             const float depth_offset = | ||||
|                 f24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32(); | ||||
|             float depth = interpolated_z_over_w * depth_scale + depth_offset; | ||||
|                 // Clamp the result
 | ||||
|                 depth = std::clamp(depth, 0.0f, 1.0f); | ||||
| 
 | ||||
|             // Potentially switch to W-Buffer
 | ||||
|             if (regs.rasterizer.depthmap_enable == | ||||
|                 Pica::RasterizerRegs::DepthBuffering::WBuffering) { | ||||
|                 // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w)
 | ||||
|                 depth *= interpolated_w_inverse.ToFloat32() * wsum; | ||||
|             } | ||||
| 
 | ||||
|             // Clamp the result
 | ||||
|             depth = std::clamp(depth, 0.0f, 1.0f); | ||||
| 
 | ||||
|             /**
 | ||||
|              * Perspective correct attribute interpolation: | ||||
|              * Attribute values cannot be calculated by simple linear interpolation since | ||||
|              * they are not linear in screen space. For example, when interpolating a | ||||
|              * texture coordinate across two vertices, something simple like | ||||
|              *     u = (u0*w0 + u1*w1)/(w0+w1) | ||||
|              * will not work. However, the attribute value divided by the | ||||
|              * clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear | ||||
|              * in screenspace. Hence, we can linearly interpolate these two independently and | ||||
|              * calculate the interpolated attribute by dividing the results. | ||||
|              * I.e. | ||||
|              *     u_over_w   = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) | ||||
|              *     one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) | ||||
|              *     u = u_over_w / one_over_w | ||||
|              * | ||||
|              * The generalization to three vertices is straightforward in baricentric coordinates. | ||||
|              **/ | ||||
|             const auto get_interpolated_attribute = [&](f24 attr0, f24 attr1, f24 attr2) { | ||||
|                 auto attr_over_w = Common::MakeVec(attr0, attr1, attr2); | ||||
|                 f24 interpolated_attr_over_w = Common::Dot(attr_over_w, baricentric_coordinates); | ||||
|                 return interpolated_attr_over_w * interpolated_w_inverse; | ||||
|             }; | ||||
| 
 | ||||
|             const Common::Vec4<u8> primary_color{ | ||||
|                 static_cast<u8>( | ||||
|                     round(get_interpolated_attribute(v0.color.r(), v1.color.r(), v2.color.r()) | ||||
|                               .ToFloat32() * | ||||
|                           255)), | ||||
|                 static_cast<u8>( | ||||
|                     round(get_interpolated_attribute(v0.color.g(), v1.color.g(), v2.color.g()) | ||||
|                               .ToFloat32() * | ||||
|                           255)), | ||||
|                 static_cast<u8>( | ||||
|                     round(get_interpolated_attribute(v0.color.b(), v1.color.b(), v2.color.b()) | ||||
|                               .ToFloat32() * | ||||
|                           255)), | ||||
|                 static_cast<u8>( | ||||
|                     round(get_interpolated_attribute(v0.color.a(), v1.color.a(), v2.color.a()) | ||||
|                               .ToFloat32() * | ||||
|                           255)), | ||||
|             }; | ||||
| 
 | ||||
|             std::array<Common::Vec2<f24>, 3> uv; | ||||
|             uv[0].u() = get_interpolated_attribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); | ||||
|             uv[0].v() = get_interpolated_attribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); | ||||
|             uv[1].u() = get_interpolated_attribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); | ||||
|             uv[1].v() = get_interpolated_attribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); | ||||
|             uv[2].u() = get_interpolated_attribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); | ||||
|             uv[2].v() = get_interpolated_attribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); | ||||
| 
 | ||||
|             // Sample bound texture units.
 | ||||
|             const f24 tc0_w = get_interpolated_attribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); | ||||
|             const auto texture_color = TextureColor(uv, textures, tc0_w); | ||||
| 
 | ||||
|             Common::Vec4<u8> primary_fragment_color = {0, 0, 0, 0}; | ||||
|             Common::Vec4<u8> secondary_fragment_color = {0, 0, 0, 0}; | ||||
| 
 | ||||
|             if (!regs.lighting.disable) { | ||||
|                 const auto normquat = | ||||
|                     Common::Quaternion<f32>{ | ||||
|                         {get_interpolated_attribute(v0.quat.x, v1.quat.x, v2.quat.x).ToFloat32(), | ||||
|                          get_interpolated_attribute(v0.quat.y, v1.quat.y, v2.quat.y).ToFloat32(), | ||||
|                          get_interpolated_attribute(v0.quat.z, v1.quat.z, v2.quat.z).ToFloat32()}, | ||||
|                         get_interpolated_attribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(), | ||||
|                     } | ||||
|                         .Normalized(); | ||||
| 
 | ||||
|                 const Common::Vec3f view{ | ||||
|                     get_interpolated_attribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(), | ||||
|                     get_interpolated_attribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(), | ||||
|                     get_interpolated_attribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(), | ||||
|                 /**
 | ||||
|                  * Perspective correct attribute interpolation: | ||||
|                  * Attribute values cannot be calculated by simple linear interpolation since | ||||
|                  * they are not linear in screen space. For example, when interpolating a | ||||
|                  * texture coordinate across two vertices, something simple like | ||||
|                  *     u = (u0*w0 + u1*w1)/(w0+w1) | ||||
|                  * will not work. However, the attribute value divided by the | ||||
|                  * clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear | ||||
|                  * in screenspace. Hence, we can linearly interpolate these two independently and | ||||
|                  * calculate the interpolated attribute by dividing the results. | ||||
|                  * I.e. | ||||
|                  *     u_over_w   = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) | ||||
|                  *     one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) | ||||
|                  *     u = u_over_w / one_over_w | ||||
|                  * | ||||
|                  * The generalization to three vertices is straightforward in baricentric | ||||
|                  *coordinates. | ||||
|                  **/ | ||||
|                 const auto get_interpolated_attribute = [&](f24 attr0, f24 attr1, f24 attr2) { | ||||
|                     auto attr_over_w = Common::MakeVec(attr0, attr1, attr2); | ||||
|                     f24 interpolated_attr_over_w = | ||||
|                         Common::Dot(attr_over_w, baricentric_coordinates); | ||||
|                     return interpolated_attr_over_w * interpolated_w_inverse; | ||||
|                 }; | ||||
|                 std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors( | ||||
|                     regs.lighting, state.lighting, normquat, view, texture_color); | ||||
|             } | ||||
| 
 | ||||
|             // Write the TEV stages.
 | ||||
|             auto combiner_output = WriteTevConfig(texture_color, tev_stages, primary_color, | ||||
|                                                   primary_fragment_color, secondary_fragment_color); | ||||
|                 const Common::Vec4<u8> primary_color{ | ||||
|                     static_cast<u8>( | ||||
|                         round(get_interpolated_attribute(v0.color.r(), v1.color.r(), v2.color.r()) | ||||
|                                   .ToFloat32() * | ||||
|                               255)), | ||||
|                     static_cast<u8>( | ||||
|                         round(get_interpolated_attribute(v0.color.g(), v1.color.g(), v2.color.g()) | ||||
|                                   .ToFloat32() * | ||||
|                               255)), | ||||
|                     static_cast<u8>( | ||||
|                         round(get_interpolated_attribute(v0.color.b(), v1.color.b(), v2.color.b()) | ||||
|                                   .ToFloat32() * | ||||
|                               255)), | ||||
|                     static_cast<u8>( | ||||
|                         round(get_interpolated_attribute(v0.color.a(), v1.color.a(), v2.color.a()) | ||||
|                                   .ToFloat32() * | ||||
|                               255)), | ||||
|                 }; | ||||
| 
 | ||||
|             const auto& output_merger = regs.framebuffer.output_merger; | ||||
|             if (output_merger.fragment_operation_mode == | ||||
|                 FramebufferRegs::FragmentOperationMode::Shadow) { | ||||
|                 u32 depth_int = static_cast<u32>(depth * 0xFFFFFF); | ||||
|                 // Use green color as the shadow intensity
 | ||||
|                 u8 stencil = combiner_output.y; | ||||
|                 fb.DrawShadowMapPixel(x >> 4, y >> 4, depth_int, stencil); | ||||
|                 // Skip the normal output merger pipeline if it is in shadow mode
 | ||||
|                 continue; | ||||
|             } | ||||
|                 std::array<Common::Vec2<f24>, 3> uv; | ||||
|                 uv[0].u() = get_interpolated_attribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); | ||||
|                 uv[0].v() = get_interpolated_attribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); | ||||
|                 uv[1].u() = get_interpolated_attribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); | ||||
|                 uv[1].v() = get_interpolated_attribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); | ||||
|                 uv[2].u() = get_interpolated_attribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); | ||||
|                 uv[2].v() = get_interpolated_attribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); | ||||
| 
 | ||||
|             // Does alpha testing happen before or after stencil?
 | ||||
|             if (!DoAlphaTest(combiner_output.a())) { | ||||
|                 continue; | ||||
|                 // Sample bound texture units.
 | ||||
|                 const f24 tc0_w = get_interpolated_attribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); | ||||
|                 const auto texture_color = TextureColor(uv, textures, tc0_w); | ||||
| 
 | ||||
|                 Common::Vec4<u8> primary_fragment_color = {0, 0, 0, 0}; | ||||
|                 Common::Vec4<u8> secondary_fragment_color = {0, 0, 0, 0}; | ||||
| 
 | ||||
|                 if (!regs.lighting.disable) { | ||||
|                     const auto normquat = | ||||
|                         Common::Quaternion<f32>{ | ||||
|                             {get_interpolated_attribute(v0.quat.x, v1.quat.x, v2.quat.x) | ||||
|                                  .ToFloat32(), | ||||
|                              get_interpolated_attribute(v0.quat.y, v1.quat.y, v2.quat.y) | ||||
|                                  .ToFloat32(), | ||||
|                              get_interpolated_attribute(v0.quat.z, v1.quat.z, v2.quat.z) | ||||
|                                  .ToFloat32()}, | ||||
|                             get_interpolated_attribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(), | ||||
|                         } | ||||
|                             .Normalized(); | ||||
| 
 | ||||
|                     const Common::Vec3f view{ | ||||
|                         get_interpolated_attribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(), | ||||
|                         get_interpolated_attribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(), | ||||
|                         get_interpolated_attribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(), | ||||
|                     }; | ||||
|                     std::tie(primary_fragment_color, secondary_fragment_color) = | ||||
|                         ComputeFragmentsColors(regs.lighting, state.lighting, normquat, view, | ||||
|                                                texture_color); | ||||
|                 } | ||||
| 
 | ||||
|                 // Write the TEV stages.
 | ||||
|                 auto combiner_output = | ||||
|                     WriteTevConfig(texture_color, tev_stages, primary_color, primary_fragment_color, | ||||
|                                    secondary_fragment_color); | ||||
| 
 | ||||
|                 const auto& output_merger = regs.framebuffer.output_merger; | ||||
|                 if (output_merger.fragment_operation_mode == | ||||
|                     FramebufferRegs::FragmentOperationMode::Shadow) { | ||||
|                     const u32 depth_int = static_cast<u32>(depth * 0xFFFFFF); | ||||
|                     // Use green color as the shadow intensity
 | ||||
|                     const u8 stencil = combiner_output.y; | ||||
|                     fb.DrawShadowMapPixel(x >> 4, y >> 4, depth_int, stencil); | ||||
|                     // Skip the normal output merger pipeline if it is in shadow mode
 | ||||
|                     continue; | ||||
|                 } | ||||
| 
 | ||||
|                 // Does alpha testing happen before or after stencil?
 | ||||
|                 if (!DoAlphaTest(combiner_output.a())) { | ||||
|                     continue; | ||||
|                 } | ||||
|                 WriteFog(depth, combiner_output); | ||||
|                 if (!DoDepthStencilTest(x, y, depth)) { | ||||
|                     continue; | ||||
|                 } | ||||
|                 const auto result = PixelColor(x, y, combiner_output); | ||||
|                 if (regs.framebuffer.framebuffer.allow_color_write != 0) { | ||||
|                     fb.DrawPixel(x >> 4, y >> 4, result); | ||||
|                 } | ||||
|             } | ||||
|             WriteFog(combiner_output, depth); | ||||
|             if (!DoDepthStencilTest(x, y, depth)) { | ||||
|                 continue; | ||||
|             } | ||||
|             const auto result = PixelColor(x, y, combiner_output); | ||||
|             if (regs.framebuffer.framebuffer.allow_color_write != 0) { | ||||
|                 fb.DrawPixel(x >> 4, y >> 4, result); | ||||
|             } | ||||
|         } | ||||
|         }; | ||||
|         sw_workers.QueueWork(std::move(process_scanline)); | ||||
|     } | ||||
|     sw_workers.WaitForRequests(); | ||||
| } | ||||
| 
 | ||||
| std::array<Common::Vec4<u8>, 4> RasterizerSoftware::TextureColor( | ||||
|  | @ -573,7 +588,7 @@ std::array<Common::Vec4<u8>, 4> RasterizerSoftware::TextureColor( | |||
| } | ||||
| 
 | ||||
| Common::Vec4<u8> RasterizerSoftware::PixelColor(u16 x, u16 y, | ||||
|                                                 Common::Vec4<u8>& combiner_output) const { | ||||
|                                                 Common::Vec4<u8> combiner_output) const { | ||||
|     const auto dest = fb.GetPixel(x >> 4, y >> 4); | ||||
|     Common::Vec4<u8> blend_output = combiner_output; | ||||
| 
 | ||||
|  | @ -771,7 +786,7 @@ Common::Vec4<u8> RasterizerSoftware::WriteTevConfig( | |||
|     return combiner_output; | ||||
| } | ||||
| 
 | ||||
| void RasterizerSoftware::WriteFog(Common::Vec4<u8>& combiner_output, float depth) const { | ||||
| void RasterizerSoftware::WriteFog(float depth, Common::Vec4<u8>& combiner_output) const { | ||||
|     /**
 | ||||
|      * Apply fog combiner. Not fully accurate. We'd have to know what data type is used to | ||||
|      * store the depth etc. Using float for now until we know more about Pica datatypes. | ||||
|  |  | |||
|  | @ -5,7 +5,7 @@ | |||
| #pragma once | ||||
| 
 | ||||
| #include <span> | ||||
| 
 | ||||
| #include "common/thread_worker.h" | ||||
| #include "video_core/rasterizer_interface.h" | ||||
| #include "video_core/regs_texturing.h" | ||||
| #include "video_core/renderer_software/sw_clipper.h" | ||||
|  | @ -52,7 +52,7 @@ private: | |||
|         std::span<const Pica::TexturingRegs::FullTextureConfig, 3> textures, f24 tc0_w) const; | ||||
| 
 | ||||
|     /// Returns the final pixel color with blending or logic ops applied.
 | ||||
|     Common::Vec4<u8> PixelColor(u16 x, u16 y, Common::Vec4<u8>& combiner_output) const; | ||||
|     Common::Vec4<u8> PixelColor(u16 x, u16 y, Common::Vec4<u8> combiner_output) const; | ||||
| 
 | ||||
|     /// Emulates the TEV configuration and returns the combiner output.
 | ||||
|     Common::Vec4<u8> WriteTevConfig( | ||||
|  | @ -62,7 +62,7 @@ private: | |||
|         Common::Vec4<u8> secondary_fragment_color); | ||||
| 
 | ||||
|     /// Blends fog to the combiner output if enabled.
 | ||||
|     void WriteFog(Common::Vec4<u8>& combiner_output, float depth) const; | ||||
|     void WriteFog(float depth, Common::Vec4<u8>& combiner_output) const; | ||||
| 
 | ||||
|     /// Performs the alpha test. Returns false if the test failed.
 | ||||
|     bool DoAlphaTest(u8 alpha) const; | ||||
|  | @ -74,6 +74,8 @@ private: | |||
|     Memory::MemorySystem& memory; | ||||
|     Pica::State& state; | ||||
|     const Pica::Regs& regs; | ||||
|     size_t num_sw_threads; | ||||
|     Common::ThreadWorker sw_workers; | ||||
|     Framebuffer fb; | ||||
| }; | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue