mirror of
				https://github.com/PabloMK7/citra.git
				synced 2025-10-31 05:40:04 +00:00 
			
		
		
		
	Merge pull request #548 from lioncash/nits
Cleanup related to vfp_helper.
This commit is contained in:
		
						commit
						7cc24562b4
					
				
					 4 changed files with 317 additions and 358 deletions
				
			
		|  | @ -773,8 +773,8 @@ void vfp_raise_exceptions(ARMul_State* state, u32 exceptions, u32 inst, u32 fpsc | ||||||
|      * Comparison instructions always return at least one of |      * Comparison instructions always return at least one of | ||||||
|      * these flags set. |      * these flags set. | ||||||
|      */ |      */ | ||||||
|     if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) |     if (exceptions & (FPSCR_NFLAG|FPSCR_ZFLAG|FPSCR_CFLAG|FPSCR_VFLAG)) | ||||||
|         fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); |         fpscr &= ~(FPSCR_NFLAG|FPSCR_ZFLAG|FPSCR_CFLAG|FPSCR_VFLAG); | ||||||
| 
 | 
 | ||||||
|     fpscr |= exceptions; |     fpscr |= exceptions; | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -45,444 +45,403 @@ | ||||||
| 
 | 
 | ||||||
| #define do_div(n, base) {n/=base;} | #define do_div(n, base) {n/=base;} | ||||||
| 
 | 
 | ||||||
| /* From vfpinstr.h */ | enum : u32 { | ||||||
|  |     FOP_MASK  = 0x00b00040, | ||||||
|  |     FOP_FMAC  = 0x00000000, | ||||||
|  |     FOP_FNMAC = 0x00000040, | ||||||
|  |     FOP_FMSC  = 0x00100000, | ||||||
|  |     FOP_FNMSC = 0x00100040, | ||||||
|  |     FOP_FMUL  = 0x00200000, | ||||||
|  |     FOP_FNMUL = 0x00200040, | ||||||
|  |     FOP_FADD  = 0x00300000, | ||||||
|  |     FOP_FSUB  = 0x00300040, | ||||||
|  |     FOP_FDIV  = 0x00800000, | ||||||
|  |     FOP_EXT   = 0x00b00040 | ||||||
|  | }; | ||||||
| 
 | 
 | ||||||
| #define INST_CPRTDO(inst)	(((inst) & 0x0f000000) == 0x0e000000) | #define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4) | ||||||
| #define INST_CPRT(inst)		((inst) & (1 << 4)) |  | ||||||
| #define INST_CPRT_L(inst)	((inst) & (1 << 20)) |  | ||||||
| #define INST_CPRT_Rd(inst)	(((inst) & (15 << 12)) >> 12) |  | ||||||
| #define INST_CPRT_OP(inst)	(((inst) >> 21) & 7) |  | ||||||
| #define INST_CPNUM(inst)	((inst) & 0xf00) |  | ||||||
| #define CPNUM(cp)		((cp) << 8) |  | ||||||
| 
 | 
 | ||||||
| #define FOP_MASK	(0x00b00040) | enum : u32 { | ||||||
| #define FOP_FMAC	(0x00000000) |     FEXT_MASK   = 0x000f0080, | ||||||
| #define FOP_FNMAC	(0x00000040) |     FEXT_FCPY   = 0x00000000, | ||||||
| #define FOP_FMSC	(0x00100000) |     FEXT_FABS   = 0x00000080, | ||||||
| #define FOP_FNMSC	(0x00100040) |     FEXT_FNEG   = 0x00010000, | ||||||
| #define FOP_FMUL	(0x00200000) |     FEXT_FSQRT  = 0x00010080, | ||||||
| #define FOP_FNMUL	(0x00200040) |     FEXT_FCMP   = 0x00040000, | ||||||
| #define FOP_FADD	(0x00300000) |     FEXT_FCMPE  = 0x00040080, | ||||||
| #define FOP_FSUB	(0x00300040) |     FEXT_FCMPZ  = 0x00050000, | ||||||
| #define FOP_FDIV	(0x00800000) |     FEXT_FCMPEZ = 0x00050080, | ||||||
| #define FOP_EXT		(0x00b00040) |     FEXT_FCVT   = 0x00070080, | ||||||
|  |     FEXT_FUITO  = 0x00080000, | ||||||
|  |     FEXT_FSITO  = 0x00080080, | ||||||
|  |     FEXT_FTOUI  = 0x000c0000, | ||||||
|  |     FEXT_FTOUIZ = 0x000c0080, | ||||||
|  |     FEXT_FTOSI  = 0x000d0000, | ||||||
|  |     FEXT_FTOSIZ = 0x000d0080 | ||||||
|  | }; | ||||||
| 
 | 
 | ||||||
| #define FOP_TO_IDX(inst)	((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4) | #define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) | ||||||
| 
 | 
 | ||||||
| #define FEXT_MASK	(0x000f0080) | #define vfp_get_sd(inst)  ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22) | ||||||
| #define FEXT_FCPY	(0x00000000) | #define vfp_get_dd(inst)  ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18) | ||||||
| #define FEXT_FABS	(0x00000080) | #define vfp_get_sm(inst)  ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5) | ||||||
| #define FEXT_FNEG	(0x00010000) | #define vfp_get_dm(inst)  ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1) | ||||||
| #define FEXT_FSQRT	(0x00010080) | #define vfp_get_sn(inst)  ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) | ||||||
| #define FEXT_FCMP	(0x00040000) | #define vfp_get_dn(inst)  ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3) | ||||||
| #define FEXT_FCMPE	(0x00040080) |  | ||||||
| #define FEXT_FCMPZ	(0x00050000) |  | ||||||
| #define FEXT_FCMPEZ	(0x00050080) |  | ||||||
| #define FEXT_FCVT	(0x00070080) |  | ||||||
| #define FEXT_FUITO	(0x00080000) |  | ||||||
| #define FEXT_FSITO	(0x00080080) |  | ||||||
| #define FEXT_FTOUI	(0x000c0000) |  | ||||||
| #define FEXT_FTOUIZ	(0x000c0080) |  | ||||||
| #define FEXT_FTOSI	(0x000d0000) |  | ||||||
| #define FEXT_FTOSIZ	(0x000d0080) |  | ||||||
| 
 | 
 | ||||||
| #define FEXT_TO_IDX(inst)	((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) | #define vfp_single(inst)  (((inst) & 0x0000f00) == 0xa00) | ||||||
| 
 |  | ||||||
| #define vfp_get_sd(inst)	((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22) |  | ||||||
| #define vfp_get_dd(inst)	((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18) |  | ||||||
| #define vfp_get_sm(inst)	((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5) |  | ||||||
| #define vfp_get_dm(inst)	((inst & 0x0000000f) | (inst & (1 << 5)) >> 1) |  | ||||||
| #define vfp_get_sn(inst)	((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) |  | ||||||
| #define vfp_get_dn(inst)	((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3) |  | ||||||
| 
 |  | ||||||
| #define vfp_single(inst)	(((inst) & 0x0000f00) == 0xa00) |  | ||||||
| 
 |  | ||||||
| #define FPSCR_N	(1 << 31) |  | ||||||
| #define FPSCR_Z	(1 << 30) |  | ||||||
| #define FPSCR_C (1 << 29) |  | ||||||
| #define FPSCR_V	(1 << 28) |  | ||||||
| 
 | 
 | ||||||
| static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) | static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) | ||||||
| { | { | ||||||
| 	if (shift) { |     if (shift) { | ||||||
| 		if (shift < 32) |         if (shift < 32) | ||||||
| 			val = val >> shift | ((val << (32 - shift)) != 0); |             val = val >> shift | ((val << (32 - shift)) != 0); | ||||||
| 		else |         else | ||||||
| 			val = val != 0; |             val = val != 0; | ||||||
| 	} |     } | ||||||
| 	return val; |     return val; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) | static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) | ||||||
| { | { | ||||||
| 	if (shift) { |     if (shift) { | ||||||
| 		if (shift < 64) |         if (shift < 64) | ||||||
| 			val = val >> shift | ((val << (64 - shift)) != 0); |             val = val >> shift | ((val << (64 - shift)) != 0); | ||||||
| 		else |         else | ||||||
| 			val = val != 0; |             val = val != 0; | ||||||
| 	} |     } | ||||||
| 	return val; |     return val; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline u32 vfp_hi64to32jamming(u64 val) | static inline u32 vfp_hi64to32jamming(u64 val) | ||||||
| { | { | ||||||
| 	u32 v; |     u32 v; | ||||||
| 	u32 highval = val >> 32; |     u32 highval = val >> 32; | ||||||
| 	u32 lowval = val & 0xffffffff; |     u32 lowval = val & 0xffffffff; | ||||||
| 
 | 
 | ||||||
| 	if (lowval >= 1) |     if (lowval >= 1) | ||||||
| 		v = highval | 1; |         v = highval | 1; | ||||||
| 	else |     else | ||||||
| 		v = highval; |         v = highval; | ||||||
| 
 | 
 | ||||||
| 	return v; |     return v; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) | static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) | ||||||
| { | { | ||||||
| 	*resl = nl + ml; |     *resl = nl + ml; | ||||||
| 	*resh = nh + mh; |     *resh = nh + mh; | ||||||
| 	if (*resl < nl) |     if (*resl < nl) | ||||||
| 		*resh += 1; |         *resh += 1; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) | static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) | ||||||
| { | { | ||||||
| 	*resl = nl - ml; |     *resl = nl - ml; | ||||||
| 	*resh = nh - mh; |     *resh = nh - mh; | ||||||
| 	if (*resl > nl) |     if (*resl > nl) | ||||||
| 		*resh -= 1; |         *resh -= 1; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) | static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m) | ||||||
| { | { | ||||||
| 	u32 nh, nl, mh, ml; |     u32 nh, nl, mh, ml; | ||||||
| 	u64 rh, rma, rmb, rl; |     u64 rh, rma, rmb, rl; | ||||||
| 
 | 
 | ||||||
| 	nl = n; |     nl = n; | ||||||
| 	ml = m; |     ml = m; | ||||||
| 	rl = (u64)nl * ml; |     rl = (u64)nl * ml; | ||||||
| 
 | 
 | ||||||
| 	nh = n >> 32; |     nh = n >> 32; | ||||||
| 	rma = (u64)nh * ml; |     rma = (u64)nh * ml; | ||||||
| 
 | 
 | ||||||
| 	mh = m >> 32; |     mh = m >> 32; | ||||||
| 	rmb = (u64)nl * mh; |     rmb = (u64)nl * mh; | ||||||
| 	rma += rmb; |     rma += rmb; | ||||||
| 
 | 
 | ||||||
| 	rh = (u64)nh * mh; |     rh = (u64)nh * mh; | ||||||
| 	rh += ((u64)(rma < rmb) << 32) + (rma >> 32); |     rh += ((u64)(rma < rmb) << 32) + (rma >> 32); | ||||||
| 
 | 
 | ||||||
| 	rma <<= 32; |     rma <<= 32; | ||||||
| 	rl += rma; |     rl += rma; | ||||||
| 	rh += (rl < rma); |     rh += (rl < rma); | ||||||
| 
 | 
 | ||||||
| 	*resl = rl; |     *resl = rl; | ||||||
| 	*resh = rh; |     *resh = rh; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline void shift64left(u64 *resh, u64 *resl, u64 n) | static inline void shift64left(u64* resh, u64* resl, u64 n) | ||||||
| { | { | ||||||
| 	*resh = n >> 63; |     *resh = n >> 63; | ||||||
| 	*resl = n << 1; |     *resl = n << 1; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline u64 vfp_hi64multiply64(u64 n, u64 m) | static inline u64 vfp_hi64multiply64(u64 n, u64 m) | ||||||
| { | { | ||||||
| 	u64 rh, rl; |     u64 rh, rl; | ||||||
| 	mul64to128(&rh, &rl, n, m); |     mul64to128(&rh, &rl, n, m); | ||||||
| 	return rh | (rl != 0); |     return rh | (rl != 0); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) | static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) | ||||||
| { | { | ||||||
| 	u64 mh, ml, remh, reml, termh, terml, z; |     u64 mh, ml, remh, reml, termh, terml, z; | ||||||
| 
 | 
 | ||||||
| 	if (nh >= m) |     if (nh >= m) | ||||||
| 		return ~0ULL; |         return ~0ULL; | ||||||
| 	mh = m >> 32; |     mh = m >> 32; | ||||||
| 	if (mh << 32 <= nh) { |     if (mh << 32 <= nh) { | ||||||
| 		z = 0xffffffff00000000ULL; |         z = 0xffffffff00000000ULL; | ||||||
| 	} else { |     } else { | ||||||
| 		z = nh; |         z = nh; | ||||||
| 		do_div(z, mh); |         do_div(z, mh); | ||||||
| 		z <<= 32; |         z <<= 32; | ||||||
| 	} |     } | ||||||
| 	mul64to128(&termh, &terml, m, z); |     mul64to128(&termh, &terml, m, z); | ||||||
| 	sub128(&remh, &reml, nh, nl, termh, terml); |     sub128(&remh, &reml, nh, nl, termh, terml); | ||||||
| 	ml = m << 32; |     ml = m << 32; | ||||||
| 	while ((s64)remh < 0) { |     while ((s64)remh < 0) { | ||||||
| 		z -= 0x100000000ULL; |         z -= 0x100000000ULL; | ||||||
| 		add128(&remh, &reml, remh, reml, mh, ml); |         add128(&remh, &reml, remh, reml, mh, ml); | ||||||
| 	} |     } | ||||||
| 	remh = (remh << 32) | (reml >> 32); |     remh = (remh << 32) | (reml >> 32); | ||||||
| 	if (mh << 32 <= remh) { |     if (mh << 32 <= remh) { | ||||||
| 		z |= 0xffffffff; |         z |= 0xffffffff; | ||||||
| 	} else { |     } else { | ||||||
| 		do_div(remh, mh); |         do_div(remh, mh); | ||||||
| 		z |= remh; |         z |= remh; | ||||||
| 	} |     } | ||||||
| 	return z; |     return z; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| /*
 | // Operations on unpacked elements
 | ||||||
|  * Operations on unpacked elements | #define vfp_sign_negate(sign) (sign ^ 0x8000) | ||||||
|  */ |  | ||||||
| #define vfp_sign_negate(sign)	(sign ^ 0x8000) |  | ||||||
| 
 | 
 | ||||||
| /*
 | // Single-precision
 | ||||||
|  * Single-precision |  | ||||||
|  */ |  | ||||||
| struct vfp_single { | struct vfp_single { | ||||||
| 	s16	exponent; |     s16	exponent; | ||||||
| 	u16	sign; |     u16	sign; | ||||||
| 	u32	significand; |     u32	significand; | ||||||
| }; | }; | ||||||
| 
 | 
 | ||||||
| /*
 | // VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
 | ||||||
|  * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa | // VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
 | ||||||
|  * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent | // VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
 | ||||||
|  * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand | // which are not propagated to the float upon packing.
 | ||||||
|  *  which are not propagated to the float upon packing. | #define VFP_SINGLE_MANTISSA_BITS (23) | ||||||
|  */ | #define VFP_SINGLE_EXPONENT_BITS (8) | ||||||
| #define VFP_SINGLE_MANTISSA_BITS	(23) | #define VFP_SINGLE_LOW_BITS      (32 - VFP_SINGLE_MANTISSA_BITS - 2) | ||||||
| #define VFP_SINGLE_EXPONENT_BITS	(8) | #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) | ||||||
| #define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2) |  | ||||||
| #define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1) |  | ||||||
| 
 | 
 | ||||||
| /*
 | // The bit in an unpacked float which indicates that it is a quiet NaN
 | ||||||
|  * The bit in an unpacked float which indicates that it is a quiet NaN |  | ||||||
|  */ |  | ||||||
| #define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) | #define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) | ||||||
| 
 | 
 | ||||||
| /*
 | // Operations on packed single-precision numbers
 | ||||||
|  * Operations on packed single-precision numbers | #define vfp_single_packed_sign(v)     ((v) & 0x80000000) | ||||||
|  */ | #define vfp_single_packed_negate(v)   ((v) ^ 0x80000000) | ||||||
| #define vfp_single_packed_sign(v)	((v) & 0x80000000) | #define vfp_single_packed_abs(v)      ((v) & ~0x80000000) | ||||||
| #define vfp_single_packed_negate(v)	((v) ^ 0x80000000) | #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) | ||||||
| #define vfp_single_packed_abs(v)	((v) & ~0x80000000) | #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) | ||||||
| #define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) |  | ||||||
| #define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) |  | ||||||
| 
 | 
 | ||||||
| /*
 | // Unpack a single-precision float.  Note that this returns the magnitude
 | ||||||
|  * Unpack a single-precision float.  Note that this returns the magnitude | // of the single-precision float mantissa with the 1. if necessary,
 | ||||||
|  * of the single-precision float mantissa with the 1. if necessary, | // aligned to bit 30.
 | ||||||
|  * aligned to bit 30. | static inline void vfp_single_unpack(vfp_single* s, s32 val) | ||||||
|  */ |  | ||||||
| static inline void vfp_single_unpack(struct vfp_single *s, s32 val) |  | ||||||
| { | { | ||||||
| 	u32 significand; |     u32 significand; | ||||||
| 
 | 
 | ||||||
| 	s->sign = vfp_single_packed_sign(val) >> 16, |     s->sign = vfp_single_packed_sign(val) >> 16, | ||||||
| 	s->exponent = vfp_single_packed_exponent(val); |     s->exponent = vfp_single_packed_exponent(val); | ||||||
| 
 | 
 | ||||||
| 	significand = (u32) val; |     significand = (u32) val; | ||||||
| 	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; |     significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; | ||||||
| 	if (s->exponent && s->exponent != 255) |     if (s->exponent && s->exponent != 255) | ||||||
| 		significand |= 0x40000000; |         significand |= 0x40000000; | ||||||
| 	s->significand = significand; |     s->significand = significand; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| /*
 | // Re-pack a single-precision float.  This assumes that the float is
 | ||||||
|  * Re-pack a single-precision float.  This assumes that the float is | // already normalised such that the MSB is bit 30, _not_ bit 31.
 | ||||||
|  * already normalised such that the MSB is bit 30, _not_ bit 31. | static inline s32 vfp_single_pack(vfp_single* s) | ||||||
|  */ |  | ||||||
| static inline s32 vfp_single_pack(struct vfp_single *s) |  | ||||||
| { | { | ||||||
| 	u32 val; |     u32 val = (s->sign << 16) + | ||||||
| 	val = (s->sign << 16) + |               (s->exponent << VFP_SINGLE_MANTISSA_BITS) + | ||||||
| 	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) + |               (s->significand >> VFP_SINGLE_LOW_BITS); | ||||||
| 	      (s->significand >> VFP_SINGLE_LOW_BITS); |     return (s32)val; | ||||||
| 	return (s32)val; |  | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| #define VFP_NUMBER		(1<<0) | enum : u32 { | ||||||
| #define VFP_ZERO		(1<<1) |     VFP_NUMBER     = (1 << 0), | ||||||
| #define VFP_DENORMAL		(1<<2) |     VFP_ZERO       = (1 << 1), | ||||||
| #define VFP_INFINITY		(1<<3) |     VFP_DENORMAL   = (1 << 2), | ||||||
| #define VFP_NAN			(1<<4) |     VFP_INFINITY   = (1 << 3), | ||||||
| #define VFP_NAN_SIGNAL		(1<<5) |     VFP_NAN        = (1 << 4), | ||||||
|  |     VFP_NAN_SIGNAL = (1 << 5), | ||||||
| 
 | 
 | ||||||
| #define VFP_QNAN		(VFP_NAN) |     VFP_QNAN       = (VFP_NAN), | ||||||
| #define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL) |     VFP_SNAN       = (VFP_NAN|VFP_NAN_SIGNAL) | ||||||
| 
 |  | ||||||
| static inline int vfp_single_type(struct vfp_single *s) |  | ||||||
| { |  | ||||||
| 	int type = VFP_NUMBER; |  | ||||||
| 	if (s->exponent == 255) { |  | ||||||
| 		if (s->significand == 0) |  | ||||||
| 			type = VFP_INFINITY; |  | ||||||
| 		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) |  | ||||||
| 			type = VFP_QNAN; |  | ||||||
| 		else |  | ||||||
| 			type = VFP_SNAN; |  | ||||||
| 	} else if (s->exponent == 0) { |  | ||||||
| 		if (s->significand == 0) |  | ||||||
| 			type |= VFP_ZERO; |  | ||||||
| 		else |  | ||||||
| 			type |= VFP_DENORMAL; |  | ||||||
| 	} |  | ||||||
| 	return type; |  | ||||||
| } |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); |  | ||||||
| 
 |  | ||||||
| /*
 |  | ||||||
|  * Double-precision |  | ||||||
|  */ |  | ||||||
| struct vfp_double { |  | ||||||
| 	s16	exponent; |  | ||||||
| 	u16	sign; |  | ||||||
| 	u64	significand; |  | ||||||
| }; | }; | ||||||
| 
 | 
 | ||||||
| /*
 | static inline int vfp_single_type(vfp_single* s) | ||||||
|  * VFP_REG_ZERO is a special register number for vfp_get_double | { | ||||||
|  * which returns (double)0.0.  This is useful for the compare with |     int type = VFP_NUMBER; | ||||||
|  * zero instructions. |     if (s->exponent == 255) { | ||||||
|  */ |         if (s->significand == 0) | ||||||
|  |             type = VFP_INFINITY; | ||||||
|  |         else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) | ||||||
|  |             type = VFP_QNAN; | ||||||
|  |         else | ||||||
|  |             type = VFP_SNAN; | ||||||
|  |     } else if (s->exponent == 0) { | ||||||
|  |         if (s->significand == 0) | ||||||
|  |             type |= VFP_ZERO; | ||||||
|  |         else | ||||||
|  |             type |= VFP_DENORMAL; | ||||||
|  |     } | ||||||
|  |     return type; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | u32 vfp_single_normaliseround(ARMul_State* state, int sd, vfp_single* vs, u32 fpscr, u32 exceptions, const char* func); | ||||||
|  | 
 | ||||||
|  | // Double-precision
 | ||||||
|  | struct vfp_double { | ||||||
|  |     s16	exponent; | ||||||
|  |     u16	sign; | ||||||
|  |     u64	significand; | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | // VFP_REG_ZERO is a special register number for vfp_get_double
 | ||||||
|  | // which returns (double)0.0.  This is useful for the compare with
 | ||||||
|  | // zero instructions.
 | ||||||
| #ifdef CONFIG_VFPv3 | #ifdef CONFIG_VFPv3 | ||||||
| #define VFP_REG_ZERO	32 | #define VFP_REG_ZERO 32 | ||||||
| #else | #else | ||||||
| #define VFP_REG_ZERO	16 | #define VFP_REG_ZERO 16 | ||||||
| #endif | #endif | ||||||
| 
 | 
 | ||||||
| #define VFP_DOUBLE_MANTISSA_BITS	(52) | #define VFP_DOUBLE_MANTISSA_BITS (52) | ||||||
| #define VFP_DOUBLE_EXPONENT_BITS	(11) | #define VFP_DOUBLE_EXPONENT_BITS (11) | ||||||
| #define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2) | #define VFP_DOUBLE_LOW_BITS      (64 - VFP_DOUBLE_MANTISSA_BITS - 2) | ||||||
| #define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1) | #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) | ||||||
| 
 | 
 | ||||||
| /*
 | // The bit in an unpacked double which indicates that it is a quiet NaN
 | ||||||
|  * The bit in an unpacked double which indicates that it is a quiet NaN | #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) | ||||||
|  */ |  | ||||||
| #define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) |  | ||||||
| 
 | 
 | ||||||
| /*
 | // Operations on packed single-precision numbers
 | ||||||
|  * Operations on packed single-precision numbers | #define vfp_double_packed_sign(v)     ((v) & (1ULL << 63)) | ||||||
|  */ | #define vfp_double_packed_negate(v)   ((v) ^ (1ULL << 63)) | ||||||
| #define vfp_double_packed_sign(v)	((v) & (1ULL << 63)) | #define vfp_double_packed_abs(v)      ((v) & ~(1ULL << 63)) | ||||||
| #define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63)) | #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) | ||||||
| #define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63)) | #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) | ||||||
| #define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) |  | ||||||
| #define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) |  | ||||||
| 
 | 
 | ||||||
| /*
 | // Unpack a double-precision float.  Note that this returns the magnitude
 | ||||||
|  * Unpack a double-precision float.  Note that this returns the magnitude | // of the double-precision float mantissa with the 1. if necessary,
 | ||||||
|  * of the double-precision float mantissa with the 1. if necessary, | // aligned to bit 62.
 | ||||||
|  * aligned to bit 62. | static inline void vfp_double_unpack(vfp_double* s, s64 val) | ||||||
|  */ |  | ||||||
| static inline void vfp_double_unpack(struct vfp_double *s, s64 val) |  | ||||||
| { | { | ||||||
| 	u64 significand; |     u64 significand; | ||||||
| 
 | 
 | ||||||
| 	s->sign = vfp_double_packed_sign(val) >> 48; |     s->sign = vfp_double_packed_sign(val) >> 48; | ||||||
| 	s->exponent = vfp_double_packed_exponent(val); |     s->exponent = vfp_double_packed_exponent(val); | ||||||
| 
 | 
 | ||||||
| 	significand = (u64) val; |     significand = (u64) val; | ||||||
| 	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; |     significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; | ||||||
| 	if (s->exponent && s->exponent != 2047) |     if (s->exponent && s->exponent != 2047) | ||||||
| 		significand |= (1ULL << 62); |         significand |= (1ULL << 62); | ||||||
| 	s->significand = significand; |     s->significand = significand; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| /*
 | // Re-pack a double-precision float.  This assumes that the float is
 | ||||||
|  * Re-pack a double-precision float.  This assumes that the float is | // already normalised such that the MSB is bit 30, _not_ bit 31.
 | ||||||
|  * already normalised such that the MSB is bit 30, _not_ bit 31. | static inline s64 vfp_double_pack(vfp_double* s) | ||||||
|  */ |  | ||||||
| static inline s64 vfp_double_pack(struct vfp_double *s) |  | ||||||
| { | { | ||||||
| 	u64 val; |     u64 val = ((u64)s->sign << 48) + | ||||||
| 	val = ((u64)s->sign << 48) + |               ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + | ||||||
| 	      ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + |               (s->significand >> VFP_DOUBLE_LOW_BITS); | ||||||
| 	      (s->significand >> VFP_DOUBLE_LOW_BITS); |     return (s64)val; | ||||||
| 	return (s64)val; |  | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline int vfp_double_type(struct vfp_double *s) | static inline int vfp_double_type(vfp_double* s) | ||||||
| { | { | ||||||
| 	int type = VFP_NUMBER; |     int type = VFP_NUMBER; | ||||||
| 	if (s->exponent == 2047) { |     if (s->exponent == 2047) { | ||||||
| 		if (s->significand == 0) |         if (s->significand == 0) | ||||||
| 			type = VFP_INFINITY; |             type = VFP_INFINITY; | ||||||
| 		else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) |         else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) | ||||||
| 			type = VFP_QNAN; |             type = VFP_QNAN; | ||||||
| 		else |         else | ||||||
| 			type = VFP_SNAN; |             type = VFP_SNAN; | ||||||
| 	} else if (s->exponent == 0) { |     } else if (s->exponent == 0) { | ||||||
| 		if (s->significand == 0) |         if (s->significand == 0) | ||||||
| 			type |= VFP_ZERO; |             type |= VFP_ZERO; | ||||||
| 		else |         else | ||||||
| 			type |= VFP_DENORMAL; |             type |= VFP_DENORMAL; | ||||||
| 	} |     } | ||||||
| 	return type; |     return type; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); | u32 vfp_double_normaliseround(ARMul_State* state, int dd, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func); | ||||||
| 
 | 
 | ||||||
| u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); | u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); | ||||||
| 
 | 
 | ||||||
| /*
 | // A special flag to tell the normalisation code not to normalise.
 | ||||||
|  * A special flag to tell the normalisation code not to normalise. | #define VFP_NAN_FLAG 0x100 | ||||||
|  */ |  | ||||||
| #define VFP_NAN_FLAG	0x100 |  | ||||||
| 
 | 
 | ||||||
| /*
 | // A bit pattern used to indicate the initial (unset) value of the
 | ||||||
|  * A bit pattern used to indicate the initial (unset) value of the | // exception mask, in case nothing handles an instruction.  This
 | ||||||
|  * exception mask, in case nothing handles an instruction.  This | // doesn't include the NAN flag, which get masked out before
 | ||||||
|  * doesn't include the NAN flag, which get masked out before | // we check for an error.
 | ||||||
|  * we check for an error. | #define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG) | ||||||
|  */ |  | ||||||
| #define VFP_EXCEPTION_ERROR	((u32)-1 & ~VFP_NAN_FLAG) |  | ||||||
| 
 | 
 | ||||||
| /*
 | // A flag to tell vfp instruction type.
 | ||||||
|  * A flag to tell vfp instruction type. | //  OP_SCALAR - This operation always operates in scalar mode
 | ||||||
|  *  OP_SCALAR - this operation always operates in scalar mode | //  OP_SD     - The instruction exceptionally writes to a single precision result.
 | ||||||
|  *  OP_SD - the instruction exceptionally writes to a single precision result. | //  OP_DD     - The instruction exceptionally writes to a double precision result.
 | ||||||
|  *  OP_DD - the instruction exceptionally writes to a double precision result. | //  OP_SM     - The instruction exceptionally reads from a single precision operand.
 | ||||||
|  *  OP_SM - the instruction exceptionally reads from a single precision operand. | enum : u32 { | ||||||
|  */ |     OP_SCALAR = (1 << 0), | ||||||
| #define OP_SCALAR	(1 << 0) |     OP_SD     = (1 << 1), | ||||||
| #define OP_SD		(1 << 1) |     OP_DD     = (1 << 1), | ||||||
| #define OP_DD		(1 << 1) |     OP_SM     = (1 << 2) | ||||||
| #define OP_SM		(1 << 2) | }; | ||||||
| 
 | 
 | ||||||
| struct op { | struct op { | ||||||
| 	u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr); |     u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr); | ||||||
| 	u32 flags; |     u32 flags; | ||||||
| }; | }; | ||||||
| 
 | 
 | ||||||
| static inline u32 fls(ARMword x) | static inline u32 fls(ARMword x) | ||||||
| { | { | ||||||
| 	int r = 32; |     int r = 32; | ||||||
| 
 | 
 | ||||||
| 	if (!x) |     if (!x) | ||||||
| 		return 0; |         return 0; | ||||||
| 	if (!(x & 0xffff0000u)) { |     if (!(x & 0xffff0000u)) { | ||||||
| 		x <<= 16; |         x <<= 16; | ||||||
| 		r -= 16; |         r -= 16; | ||||||
| 	} |     } | ||||||
| 	if (!(x & 0xff000000u)) { |     if (!(x & 0xff000000u)) { | ||||||
| 		x <<= 8; |         x <<= 8; | ||||||
| 		r -= 8; |         r -= 8; | ||||||
| 	} |     } | ||||||
| 	if (!(x & 0xf0000000u)) { |     if (!(x & 0xf0000000u)) { | ||||||
| 		x <<= 4; |         x <<= 4; | ||||||
| 		r -= 4; |         r -= 4; | ||||||
| 	} |     } | ||||||
| 	if (!(x & 0xc0000000u)) { |     if (!(x & 0xc0000000u)) { | ||||||
| 		x <<= 2; |         x <<= 2; | ||||||
| 		r -= 2; |         r -= 2; | ||||||
| 	} |     } | ||||||
| 	if (!(x & 0x80000000u)) { |     if (!(x & 0x80000000u)) { | ||||||
| 		x <<= 1; |         x <<= 1; | ||||||
| 		r -= 1; |         r -= 1; | ||||||
| 	} |     } | ||||||
| 	return r; |     return r; | ||||||
| 
 | 
 | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| u32 vfp_double_normaliseroundintern(ARMul_State* state, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); | u32 vfp_double_normaliseroundintern(ARMul_State* state, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func); | ||||||
| u32 vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr); | u32 vfp_double_multiply(vfp_double* vdd, vfp_double* vdn, vfp_double* vdm, u32 fpscr); | ||||||
| u32 vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr); | u32 vfp_double_add(vfp_double* vdd, vfp_double* vdn, vfp_double *vdm, u32 fpscr); | ||||||
| u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, struct vfp_double* dm, u32 fpscr); | u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, vfp_double* dm, u32 fpscr); | ||||||
|  |  | ||||||
|  | @ -511,7 +511,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u | ||||||
|     LOG_TRACE(Core_ARM11, "In %s, state=0x%x, fpscr=0x%x\n", __FUNCTION__, state, fpscr); |     LOG_TRACE(Core_ARM11, "In %s, state=0x%x, fpscr=0x%x\n", __FUNCTION__, state, fpscr); | ||||||
|     m = vfp_get_double(state, dm); |     m = vfp_get_double(state, dm); | ||||||
|     if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { |     if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { | ||||||
|         ret |= FPSCR_C | FPSCR_V; |         ret |= FPSCR_CFLAG | FPSCR_VFLAG; | ||||||
|         if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) |         if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) | ||||||
|             /*
 |             /*
 | ||||||
|              * Signalling NaN, or signalling on quiet NaN |              * Signalling NaN, or signalling on quiet NaN | ||||||
|  | @ -521,7 +521,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u | ||||||
| 
 | 
 | ||||||
|     d = vfp_get_double(state, dd); |     d = vfp_get_double(state, dd); | ||||||
|     if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { |     if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { | ||||||
|         ret |= FPSCR_C | FPSCR_V; |         ret |= FPSCR_CFLAG | FPSCR_VFLAG; | ||||||
|         if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) |         if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) | ||||||
|             /*
 |             /*
 | ||||||
|              * Signalling NaN, or signalling on quiet NaN |              * Signalling NaN, or signalling on quiet NaN | ||||||
|  | @ -535,7 +535,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u | ||||||
|             /*
 |             /*
 | ||||||
|              * equal |              * equal | ||||||
|              */ |              */ | ||||||
|             ret |= FPSCR_Z | FPSCR_C; |             ret |= FPSCR_ZFLAG | FPSCR_CFLAG; | ||||||
|             //printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret);
 |             //printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret);
 | ||||||
|         } else if (vfp_double_packed_sign(d ^ m)) { |         } else if (vfp_double_packed_sign(d ^ m)) { | ||||||
|             /*
 |             /*
 | ||||||
|  | @ -545,22 +545,22 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u | ||||||
|                 /*
 |                 /*
 | ||||||
|                  * d is negative, so d < m |                  * d is negative, so d < m | ||||||
|                  */ |                  */ | ||||||
|                 ret |= FPSCR_N; |                 ret |= FPSCR_NFLAG; | ||||||
|             else |             else | ||||||
|                 /*
 |                 /*
 | ||||||
|                  * d is positive, so d > m |                  * d is positive, so d > m | ||||||
|                  */ |                  */ | ||||||
|                 ret |= FPSCR_C; |                 ret |= FPSCR_CFLAG; | ||||||
|         } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { |         } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { | ||||||
|             /*
 |             /*
 | ||||||
|              * d < m |              * d < m | ||||||
|              */ |              */ | ||||||
|             ret |= FPSCR_N; |             ret |= FPSCR_NFLAG; | ||||||
|         } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { |         } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { | ||||||
|             /*
 |             /*
 | ||||||
|              * d > m |              * d > m | ||||||
|              */ |              */ | ||||||
|             ret |= FPSCR_C; |             ret |= FPSCR_CFLAG; | ||||||
|         } |         } | ||||||
|     } |     } | ||||||
|     LOG_TRACE(Core_ARM11, "In %s, state=0x%x, ret=0x%x\n", __FUNCTION__, state, ret); |     LOG_TRACE(Core_ARM11, "In %s, state=0x%x, ret=0x%x\n", __FUNCTION__, state, ret); | ||||||
|  |  | ||||||
|  | @ -419,7 +419,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3 | ||||||
| 
 | 
 | ||||||
|     d = vfp_get_float(state, sd); |     d = vfp_get_float(state, sd); | ||||||
|     if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { |     if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { | ||||||
|         ret |= FPSCR_C | FPSCR_V; |         ret |= FPSCR_CFLAG | FPSCR_VFLAG; | ||||||
|         if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) |         if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) | ||||||
|             /*
 |             /*
 | ||||||
|              * Signalling NaN, or signalling on quiet NaN |              * Signalling NaN, or signalling on quiet NaN | ||||||
|  | @ -428,7 +428,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3 | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|     if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { |     if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { | ||||||
|         ret |= FPSCR_C | FPSCR_V; |         ret |= FPSCR_CFLAG | FPSCR_VFLAG; | ||||||
|         if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) |         if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) | ||||||
|             /*
 |             /*
 | ||||||
|              * Signalling NaN, or signalling on quiet NaN |              * Signalling NaN, or signalling on quiet NaN | ||||||
|  | @ -441,7 +441,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3 | ||||||
|             /*
 |             /*
 | ||||||
|              * equal |              * equal | ||||||
|              */ |              */ | ||||||
|             ret |= FPSCR_Z | FPSCR_C; |             ret |= FPSCR_ZFLAG | FPSCR_CFLAG; | ||||||
|         } else if (vfp_single_packed_sign(d ^ m)) { |         } else if (vfp_single_packed_sign(d ^ m)) { | ||||||
|             /*
 |             /*
 | ||||||
|              * different signs |              * different signs | ||||||
|  | @ -450,22 +450,22 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3 | ||||||
|                 /*
 |                 /*
 | ||||||
|                  * d is negative, so d < m |                  * d is negative, so d < m | ||||||
|                  */ |                  */ | ||||||
|                 ret |= FPSCR_N; |                 ret |= FPSCR_NFLAG; | ||||||
|             else |             else | ||||||
|                 /*
 |                 /*
 | ||||||
|                  * d is positive, so d > m |                  * d is positive, so d > m | ||||||
|                  */ |                  */ | ||||||
|                 ret |= FPSCR_C; |                 ret |= FPSCR_CFLAG; | ||||||
|         } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { |         } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { | ||||||
|             /*
 |             /*
 | ||||||
|              * d < m |              * d < m | ||||||
|              */ |              */ | ||||||
|             ret |= FPSCR_N; |             ret |= FPSCR_NFLAG; | ||||||
|         } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { |         } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { | ||||||
|             /*
 |             /*
 | ||||||
|              * d > m |              * d > m | ||||||
|              */ |              */ | ||||||
|             ret |= FPSCR_C; |             ret |= FPSCR_CFLAG; | ||||||
|         } |         } | ||||||
|     } |     } | ||||||
|     return ret; |     return ret; | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue