mirror of
				https://github.com/PabloMK7/citra.git
				synced 2025-10-30 21:30:04 +00:00 
			
		
		
		
	dyncom: Remove static keyword from header functions
This commit is contained in:
		
							parent
							
								
									1ea0702eaa
								
							
						
					
					
						commit
						56e22e6aac
					
				
					 3 changed files with 19 additions and 19 deletions
				
			
		|  | @ -30,7 +30,7 @@ | ||||||
|  * @return If the PC is being read, then the word-aligned PC value is returned. |  * @return If the PC is being read, then the word-aligned PC value is returned. | ||||||
|  *         If the PC is not being read, then the value stored in the register is returned. |  *         If the PC is not being read, then the value stored in the register is returned. | ||||||
|  */ |  */ | ||||||
| static inline u32 CHECK_READ_REG15_WA(const ARMul_State* cpu, int Rn) { | inline u32 CHECK_READ_REG15_WA(const ARMul_State* cpu, int Rn) { | ||||||
|     return (Rn == 15) ? ((cpu->Reg[15] & ~0x3) + cpu->GetInstructionSize() * 2) : cpu->Reg[Rn]; |     return (Rn == 15) ? ((cpu->Reg[15] & ~0x3) + cpu->GetInstructionSize() * 2) : cpu->Reg[Rn]; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
|  | @ -43,6 +43,6 @@ static inline u32 CHECK_READ_REG15_WA(const ARMul_State* cpu, int Rn) { | ||||||
|  * @return If the PC is being read, then the incremented PC value is returned. |  * @return If the PC is being read, then the incremented PC value is returned. | ||||||
|  *         If the PC is not being read, then the values stored in the register is returned. |  *         If the PC is not being read, then the values stored in the register is returned. | ||||||
|  */ |  */ | ||||||
| static inline u32 CHECK_READ_REG15(const ARMul_State* cpu, int Rn) { | inline u32 CHECK_READ_REG15(const ARMul_State* cpu, int Rn) { | ||||||
|     return (Rn == 15) ? ((cpu->Reg[15] & ~0x1) + cpu->GetInstructionSize() * 2) : cpu->Reg[Rn]; |     return (Rn == 15) ? ((cpu->Reg[15] & ~0x1) + cpu->GetInstructionSize() * 2) : cpu->Reg[Rn]; | ||||||
| } | } | ||||||
|  |  | ||||||
|  | @ -38,7 +38,7 @@ enum class ThumbDecodeStatus { | ||||||
| // Translates a Thumb mode instruction into its ARM equivalent.
 | // Translates a Thumb mode instruction into its ARM equivalent.
 | ||||||
| ThumbDecodeStatus TranslateThumbInstruction(u32 addr, u32 instr, u32* ainstr, u32* inst_size); | ThumbDecodeStatus TranslateThumbInstruction(u32 addr, u32 instr, u32* ainstr, u32* inst_size); | ||||||
| 
 | 
 | ||||||
| static inline u32 GetThumbInstruction(u32 instr, u32 address) { | inline u32 GetThumbInstruction(u32 instr, u32 address) { | ||||||
|     // Normally you would need to handle instruction endianness,
 |     // Normally you would need to handle instruction endianness,
 | ||||||
|     // however, it is fixed to little-endian on the MPCore, so
 |     // however, it is fixed to little-endian on the MPCore, so
 | ||||||
|     // there's no need to check for this beforehand.
 |     // there's no need to check for this beforehand.
 | ||||||
|  |  | ||||||
|  | @ -85,7 +85,7 @@ enum : u32 { | ||||||
| 
 | 
 | ||||||
| #define vfp_single(inst)  (((inst) & 0x0000f00) == 0xa00) | #define vfp_single(inst)  (((inst) & 0x0000f00) == 0xa00) | ||||||
| 
 | 
 | ||||||
| static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) | inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) | ||||||
| { | { | ||||||
|     if (shift) { |     if (shift) { | ||||||
|         if (shift < 32) |         if (shift < 32) | ||||||
|  | @ -96,7 +96,7 @@ static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) | ||||||
|     return val; |     return val; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) | inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) | ||||||
| { | { | ||||||
|     if (shift) { |     if (shift) { | ||||||
|         if (shift < 64) |         if (shift < 64) | ||||||
|  | @ -107,7 +107,7 @@ static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) | ||||||
|     return val; |     return val; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline u32 vfp_hi64to32jamming(u64 val) | inline u32 vfp_hi64to32jamming(u64 val) | ||||||
| { | { | ||||||
|     u32 v; |     u32 v; | ||||||
|     u32 highval = val >> 32; |     u32 highval = val >> 32; | ||||||
|  | @ -121,7 +121,7 @@ static inline u32 vfp_hi64to32jamming(u64 val) | ||||||
|     return v; |     return v; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) | inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) | ||||||
| { | { | ||||||
|     *resl = nl + ml; |     *resl = nl + ml; | ||||||
|     *resh = nh + mh; |     *resh = nh + mh; | ||||||
|  | @ -129,7 +129,7 @@ static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) | ||||||
|         *resh += 1; |         *resh += 1; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) | inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) | ||||||
| { | { | ||||||
|     *resl = nl - ml; |     *resl = nl - ml; | ||||||
|     *resh = nh - mh; |     *resh = nh - mh; | ||||||
|  | @ -137,7 +137,7 @@ static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) | ||||||
|         *resh -= 1; |         *resh -= 1; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m) | inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m) | ||||||
| { | { | ||||||
|     u32 nh, nl, mh, ml; |     u32 nh, nl, mh, ml; | ||||||
|     u64 rh, rma, rmb, rl; |     u64 rh, rma, rmb, rl; | ||||||
|  | @ -164,20 +164,20 @@ static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m) | ||||||
|     *resh = rh; |     *resh = rh; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline void shift64left(u64* resh, u64* resl, u64 n) | inline void shift64left(u64* resh, u64* resl, u64 n) | ||||||
| { | { | ||||||
|     *resh = n >> 63; |     *resh = n >> 63; | ||||||
|     *resl = n << 1; |     *resl = n << 1; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline u64 vfp_hi64multiply64(u64 n, u64 m) | inline u64 vfp_hi64multiply64(u64 n, u64 m) | ||||||
| { | { | ||||||
|     u64 rh, rl; |     u64 rh, rl; | ||||||
|     mul64to128(&rh, &rl, n, m); |     mul64to128(&rh, &rl, n, m); | ||||||
|     return rh | (rl != 0); |     return rh | (rl != 0); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) | inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) | ||||||
| { | { | ||||||
|     u64 mh, ml, remh, reml, termh, terml, z; |     u64 mh, ml, remh, reml, termh, terml, z; | ||||||
| 
 | 
 | ||||||
|  | @ -249,7 +249,7 @@ enum : u32 { | ||||||
|     VFP_SNAN       = (VFP_NAN|VFP_NAN_SIGNAL) |     VFP_SNAN       = (VFP_NAN|VFP_NAN_SIGNAL) | ||||||
| }; | }; | ||||||
| 
 | 
 | ||||||
| static inline int vfp_single_type(const vfp_single* s) | inline int vfp_single_type(const vfp_single* s) | ||||||
| { | { | ||||||
|     int type = VFP_NUMBER; |     int type = VFP_NUMBER; | ||||||
|     if (s->exponent == 255) { |     if (s->exponent == 255) { | ||||||
|  | @ -271,7 +271,7 @@ static inline int vfp_single_type(const vfp_single* s) | ||||||
| // Unpack a single-precision float.  Note that this returns the magnitude
 | // Unpack a single-precision float.  Note that this returns the magnitude
 | ||||||
| // of the single-precision float mantissa with the 1. if necessary,
 | // of the single-precision float mantissa with the 1. if necessary,
 | ||||||
| // aligned to bit 30.
 | // aligned to bit 30.
 | ||||||
| static inline void vfp_single_unpack(vfp_single* s, s32 val, u32* fpscr) | inline void vfp_single_unpack(vfp_single* s, s32 val, u32* fpscr) | ||||||
| { | { | ||||||
|     s->sign = vfp_single_packed_sign(val) >> 16, |     s->sign = vfp_single_packed_sign(val) >> 16, | ||||||
|     s->exponent = vfp_single_packed_exponent(val); |     s->exponent = vfp_single_packed_exponent(val); | ||||||
|  | @ -293,7 +293,7 @@ static inline void vfp_single_unpack(vfp_single* s, s32 val, u32* fpscr) | ||||||
| 
 | 
 | ||||||
| // Re-pack a single-precision float. This assumes that the float is
 | // Re-pack a single-precision float. This assumes that the float is
 | ||||||
| // already normalised such that the MSB is bit 30, _not_ bit 31.
 | // already normalised such that the MSB is bit 30, _not_ bit 31.
 | ||||||
| static inline s32 vfp_single_pack(const vfp_single* s) | inline s32 vfp_single_pack(const vfp_single* s) | ||||||
| { | { | ||||||
|     u32 val = (s->sign << 16) + |     u32 val = (s->sign << 16) + | ||||||
|               (s->exponent << VFP_SINGLE_MANTISSA_BITS) + |               (s->exponent << VFP_SINGLE_MANTISSA_BITS) + | ||||||
|  | @ -335,7 +335,7 @@ struct vfp_double { | ||||||
| #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) | #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) | ||||||
| #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) | #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) | ||||||
| 
 | 
 | ||||||
| static inline int vfp_double_type(const vfp_double* s) | inline int vfp_double_type(const vfp_double* s) | ||||||
| { | { | ||||||
|     int type = VFP_NUMBER; |     int type = VFP_NUMBER; | ||||||
|     if (s->exponent == 2047) { |     if (s->exponent == 2047) { | ||||||
|  | @ -357,7 +357,7 @@ static inline int vfp_double_type(const vfp_double* s) | ||||||
| // Unpack a double-precision float.  Note that this returns the magnitude
 | // Unpack a double-precision float.  Note that this returns the magnitude
 | ||||||
| // of the double-precision float mantissa with the 1. if necessary,
 | // of the double-precision float mantissa with the 1. if necessary,
 | ||||||
| // aligned to bit 62.
 | // aligned to bit 62.
 | ||||||
| static inline void vfp_double_unpack(vfp_double* s, s64 val, u32* fpscr) | inline void vfp_double_unpack(vfp_double* s, s64 val, u32* fpscr) | ||||||
| { | { | ||||||
|     s->sign = vfp_double_packed_sign(val) >> 48; |     s->sign = vfp_double_packed_sign(val) >> 48; | ||||||
|     s->exponent = vfp_double_packed_exponent(val); |     s->exponent = vfp_double_packed_exponent(val); | ||||||
|  | @ -379,7 +379,7 @@ static inline void vfp_double_unpack(vfp_double* s, s64 val, u32* fpscr) | ||||||
| 
 | 
 | ||||||
| // Re-pack a double-precision float. This assumes that the float is
 | // Re-pack a double-precision float. This assumes that the float is
 | ||||||
| // already normalised such that the MSB is bit 30, _not_ bit 31.
 | // already normalised such that the MSB is bit 30, _not_ bit 31.
 | ||||||
| static inline s64 vfp_double_pack(const vfp_double* s) | inline s64 vfp_double_pack(const vfp_double* s) | ||||||
| { | { | ||||||
|     u64 val = ((u64)s->sign << 48) + |     u64 val = ((u64)s->sign << 48) + | ||||||
|               ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + |               ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + | ||||||
|  | @ -415,7 +415,7 @@ struct op { | ||||||
|     u32 flags; |     u32 flags; | ||||||
| }; | }; | ||||||
| 
 | 
 | ||||||
| static inline u32 fls(u32 x) | inline u32 fls(u32 x) | ||||||
| { | { | ||||||
|     int r = 32; |     int r = 32; | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue