mirror of
				https://github.com/PabloMK7/citra.git
				synced 2025-10-31 13:50:03 +00:00 
			
		
		
		
	Merge pull request #1723 from MerryMage/audio-interp
AudioCore: Implement interpolation
This commit is contained in:
		
						commit
						4c235955cf
					
				
					 3 changed files with 128 additions and 0 deletions
				
			
		|  | @ -4,6 +4,7 @@ set(SRCS | |||
|             hle/dsp.cpp | ||||
|             hle/filter.cpp | ||||
|             hle/pipe.cpp | ||||
|             interpolate.cpp | ||||
|             ) | ||||
| 
 | ||||
| set(HEADERS | ||||
|  | @ -13,6 +14,7 @@ set(HEADERS | |||
|             hle/dsp.h | ||||
|             hle/filter.h | ||||
|             hle/pipe.h | ||||
|             interpolate.h | ||||
|             sink.h | ||||
|             ) | ||||
| 
 | ||||
|  |  | |||
							
								
								
									
										85
									
								
								src/audio_core/interpolate.cpp
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										85
									
								
								src/audio_core/interpolate.cpp
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,85 @@ | |||
| // Copyright 2016 Citra Emulator Project
 | ||||
| // Licensed under GPLv2 or any later version
 | ||||
| // Refer to the license.txt file included.
 | ||||
| 
 | ||||
| #include "audio_core/interpolate.h" | ||||
| 
 | ||||
| #include "common/assert.h" | ||||
| #include "common/math_util.h" | ||||
| 
 | ||||
| namespace AudioInterp { | ||||
| 
 | ||||
| // Calculations are done in fixed point with 24 fractional bits.
 | ||||
| // (This is not verified. This was chosen for minimal error.)
 | ||||
| constexpr u64 scale_factor = 1 << 24; | ||||
| constexpr u64 scale_mask = scale_factor - 1; | ||||
| 
 | ||||
| /// Here we step over the input in steps of rate_multiplier, until we consume all of the input.
 | ||||
| /// Three adjacent samples are passed to fn each step.
 | ||||
| template <typename Function> | ||||
| static StereoBuffer16 StepOverSamples(State& state, const StereoBuffer16& input, float rate_multiplier, Function fn) { | ||||
|     ASSERT(rate_multiplier > 0); | ||||
| 
 | ||||
|     if (input.size() < 2) | ||||
|         return {}; | ||||
| 
 | ||||
|     StereoBuffer16 output; | ||||
|     output.reserve(static_cast<size_t>(input.size() / rate_multiplier)); | ||||
| 
 | ||||
|     u64 step_size = static_cast<u64>(rate_multiplier * scale_factor); | ||||
| 
 | ||||
|     u64 fposition = 0; | ||||
|     const u64 max_fposition = input.size() * scale_factor; | ||||
| 
 | ||||
|     while (fposition < 1 * scale_factor) { | ||||
|         u64 fraction = fposition & scale_mask; | ||||
| 
 | ||||
|         output.push_back(fn(fraction, state.xn2, state.xn1, input[0])); | ||||
| 
 | ||||
|         fposition += step_size; | ||||
|     } | ||||
| 
 | ||||
|     while (fposition < 2 * scale_factor) { | ||||
|         u64 fraction = fposition & scale_mask; | ||||
| 
 | ||||
|         output.push_back(fn(fraction, state.xn1, input[0], input[1])); | ||||
| 
 | ||||
|         fposition += step_size; | ||||
|     } | ||||
| 
 | ||||
|     while (fposition < max_fposition) { | ||||
|         u64 fraction = fposition & scale_mask; | ||||
| 
 | ||||
|         size_t index = static_cast<size_t>(fposition / scale_factor); | ||||
|         output.push_back(fn(fraction, input[index - 2], input[index - 1], input[index])); | ||||
| 
 | ||||
|         fposition += step_size; | ||||
|     } | ||||
| 
 | ||||
|     state.xn2 = input[input.size() - 2]; | ||||
|     state.xn1 = input[input.size() - 1]; | ||||
| 
 | ||||
|     return output; | ||||
| } | ||||
| 
 | ||||
| StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier) { | ||||
|     return StepOverSamples(state, input, rate_multiplier, [](u64 fraction, const auto& x0, const auto& x1, const auto& x2) { | ||||
|         return x0; | ||||
|     }); | ||||
| } | ||||
| 
 | ||||
| StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier) { | ||||
|     // Note on accuracy: Some values that this produces are +/- 1 from the actual firmware.
 | ||||
|     return StepOverSamples(state, input, rate_multiplier, [](u64 fraction, const auto& x0, const auto& x1, const auto& x2) { | ||||
|         // This is a saturated subtraction. (Verified by black-box fuzzing.)
 | ||||
|         s64 delta0 = MathUtil::Clamp<s64>(x1[0] - x0[0], -32768, 32767); | ||||
|         s64 delta1 = MathUtil::Clamp<s64>(x1[1] - x0[1], -32768, 32767); | ||||
| 
 | ||||
|         return std::array<s16, 2> { | ||||
|             static_cast<s16>(x0[0] + fraction * delta0 / scale_factor), | ||||
|             static_cast<s16>(x0[1] + fraction * delta1 / scale_factor) | ||||
|         }; | ||||
|     }); | ||||
| } | ||||
| 
 | ||||
| } // namespace AudioInterp
 | ||||
							
								
								
									
										41
									
								
								src/audio_core/interpolate.h
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										41
									
								
								src/audio_core/interpolate.h
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,41 @@ | |||
| // Copyright 2016 Citra Emulator Project
 | ||||
| // Licensed under GPLv2 or any later version
 | ||||
| // Refer to the license.txt file included.
 | ||||
| 
 | ||||
| #pragma once | ||||
| 
 | ||||
| #include <array> | ||||
| #include <vector> | ||||
| 
 | ||||
| #include "common/common_types.h" | ||||
| 
 | ||||
| namespace AudioInterp { | ||||
| 
 | ||||
| /// A variable length buffer of signed PCM16 stereo samples.
 | ||||
| using StereoBuffer16 = std::vector<std::array<s16, 2>>; | ||||
| 
 | ||||
| struct State { | ||||
|     // Two historical samples.
 | ||||
|     std::array<s16, 2> xn1 = {}; ///< x[n-1]
 | ||||
|     std::array<s16, 2> xn2 = {}; ///< x[n-2]
 | ||||
| }; | ||||
| 
 | ||||
| /**
 | ||||
|  * No interpolation. This is equivalent to a zero-order hold. There is a two-sample predelay. | ||||
|  * @param input Input buffer. | ||||
|  * @param rate_multiplier Stretch factor. Must be a positive non-zero value. | ||||
|  *                        rate_multiplier > 1.0 performs decimation and rate_multipler < 1.0 performs upsampling. | ||||
|  * @return The resampled audio buffer. | ||||
|  */ | ||||
| StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier); | ||||
| 
 | ||||
| /**
 | ||||
|  * Linear interpolation. This is equivalent to a first-order hold. There is a two-sample predelay. | ||||
|  * @param input Input buffer. | ||||
|  * @param rate_multiplier Stretch factor. Must be a positive non-zero value. | ||||
|  *                        rate_multiplier > 1.0 performs decimation and rate_multipler < 1.0 performs upsampling. | ||||
|  * @return The resampled audio buffer. | ||||
|  */ | ||||
| StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier); | ||||
| 
 | ||||
| } // namespace AudioInterp
 | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue