mirror of
				https://github.com/PabloMK7/citra.git
				synced 2025-10-31 22:00:05 +00:00 
			
		
		
		
	Pica/Math: Improved the design of the Vec2/Vec3/Vec4 classes and simplified rasterizer code accordingly.
- Swizzlers now return const objects so that things like "first_vec4.xyz() = some_vec3" now will fail to compile (ideally we should support some vector holding references to make this actually work). - The methods "InsertBeforeX/Y/Z" and "Append" have been replaced by more versions of MakeVec, which now also supports building new vectors from vectors. - Vector library now follows C++ type promotion rules (hence, the result of Vec2<u8> with another Vec2<u8> is now a Vec2<int>).
This commit is contained in:
		
							parent
							
								
									62c36a4ef0
								
							
						
					
					
						commit
						162d641a30
					
				
					 3 changed files with 133 additions and 98 deletions
				
			
		|  | @ -39,6 +39,13 @@ template<typename T> class Vec2; | |||
| template<typename T> class Vec3; | ||||
| template<typename T> class Vec4; | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec2<T> MakeVec(const T& x, const T& y); | ||||
| template<typename T> | ||||
| static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z); | ||||
| template<typename T> | ||||
| static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w); | ||||
| 
 | ||||
| 
 | ||||
| template<typename T> | ||||
| class Vec2 { | ||||
|  | @ -68,34 +75,34 @@ public: | |||
|         a[0] = x; a[1] = y; | ||||
|     } | ||||
| 
 | ||||
|     Vec2 operator +(const Vec2& other) const | ||||
|     Vec2<decltype(T{}+T{})> operator +(const Vec2& other) const | ||||
|     { | ||||
|         return Vec2(x+other.x, y+other.y); | ||||
|         return MakeVec(x+other.x, y+other.y); | ||||
|     } | ||||
|     void operator += (const Vec2 &other) | ||||
|     { | ||||
|         x+=other.x; y+=other.y; | ||||
|     } | ||||
|     Vec2 operator -(const Vec2& other) const | ||||
|     Vec2<decltype(T{}-T{})> operator -(const Vec2& other) const | ||||
|     { | ||||
|         return Vec2(x-other.x, y-other.y); | ||||
|         return MakeVec(x-other.x, y-other.y); | ||||
|     } | ||||
|     void operator -= (const Vec2& other) | ||||
|     { | ||||
|         x-=other.x; y-=other.y; | ||||
|     } | ||||
|     Vec2 operator -() const | ||||
|     Vec2<decltype(-T{})> operator -() const | ||||
|     { | ||||
|         return Vec2(-x,-y); | ||||
|         return MakeVec(-x,-y); | ||||
|     } | ||||
|     Vec2 operator * (const Vec2& other) const | ||||
|     Vec2<decltype(T{}*T{})> operator * (const Vec2& other) const | ||||
|     { | ||||
|         return Vec2(x*other.x, y*other.y); | ||||
|         return MakeVec(x*other.x, y*other.y); | ||||
|     } | ||||
|     template<typename V> | ||||
|     Vec2 operator * (const V& f) const | ||||
|     Vec2<decltype(T{}*V{})> operator * (const V& f) const | ||||
|     { | ||||
|         return Vec2(x*f,y*f); | ||||
|         return MakeVec(x*f,y*f); | ||||
|     } | ||||
|     template<typename V> | ||||
|     void operator *= (const V& f) | ||||
|  | @ -103,9 +110,9 @@ public: | |||
|         x*=f; y*=f; | ||||
|     } | ||||
|     template<typename V> | ||||
|     Vec2 operator / (const V& f) const | ||||
|     Vec2<decltype(T{}/V{})> operator / (const V& f) const | ||||
|     { | ||||
|         return Vec2(x/f,y/f); | ||||
|         return MakeVec(x/f,y/f); | ||||
|     } | ||||
|     template<typename V> | ||||
|     void operator /= (const V& f) | ||||
|  | @ -152,20 +159,9 @@ public: | |||
|     const T& t() const { return y; } | ||||
| 
 | ||||
|     // swizzlers - create a subvector of specific components
 | ||||
|     Vec2 yx() const { return Vec2(y, x); } | ||||
|     Vec2 vu() const { return Vec2(y, x); } | ||||
|     Vec2 ts() const { return Vec2(y, x); } | ||||
| 
 | ||||
|     // Inserters to add new elements to effectively create larger vectors containing this Vec2
 | ||||
|     Vec3<T> InsertBeforeX(const T& value) { | ||||
|         return Vec3<T>(value, x, y); | ||||
|     } | ||||
|     Vec3<T> InsertBeforeY(const T& value) { | ||||
|         return Vec3<T>(x, value, y); | ||||
|     } | ||||
|     Vec3<T> Append(const T& value) { | ||||
|         return Vec3<T>(x, y, value); | ||||
|     } | ||||
|     const Vec2 yx() const { return Vec2(y, x); } | ||||
|     const Vec2 vu() const { return Vec2(y, x); } | ||||
|     const Vec2 ts() const { return Vec2(y, x); } | ||||
| }; | ||||
| 
 | ||||
| template<typename T, typename V> | ||||
|  | @ -193,7 +189,7 @@ public: | |||
| 
 | ||||
|     template<typename T2> | ||||
|     Vec3<T2> Cast() const { | ||||
|         return Vec3<T2>((T2)x, (T2)y, (T2)z); | ||||
|         return MakeVec<T2>((T2)x, (T2)y, (T2)z); | ||||
|     } | ||||
| 
 | ||||
|     // Only implemented for T=int and T=float
 | ||||
|  | @ -202,7 +198,7 @@ public: | |||
| 
 | ||||
|     static Vec3 AssignToAll(const T& f) | ||||
|     { | ||||
|         return Vec3<T>(f, f, f); | ||||
|         return MakeVec(f, f, f); | ||||
|     } | ||||
| 
 | ||||
|     void Write(T a[3]) | ||||
|  | @ -210,34 +206,34 @@ public: | |||
|         a[0] = x; a[1] = y; a[2] = z; | ||||
|     } | ||||
| 
 | ||||
|     Vec3 operator +(const Vec3 &other) const | ||||
|     Vec3<decltype(T{}+T{})> operator +(const Vec3 &other) const | ||||
|     { | ||||
|         return Vec3(x+other.x, y+other.y, z+other.z); | ||||
|         return MakeVec(x+other.x, y+other.y, z+other.z); | ||||
|     } | ||||
|     void operator += (const Vec3 &other) | ||||
|     { | ||||
|         x+=other.x; y+=other.y; z+=other.z; | ||||
|     } | ||||
|     Vec3 operator -(const Vec3 &other) const | ||||
|     Vec3<decltype(T{}-T{})> operator -(const Vec3 &other) const | ||||
|     { | ||||
|         return Vec3(x-other.x, y-other.y, z-other.z); | ||||
|         return MakeVec(x-other.x, y-other.y, z-other.z); | ||||
|     } | ||||
|     void operator -= (const Vec3 &other) | ||||
|     { | ||||
|         x-=other.x; y-=other.y; z-=other.z; | ||||
|     } | ||||
|     Vec3 operator -() const | ||||
|     Vec3<decltype(-T{})> operator -() const | ||||
|     { | ||||
|         return Vec3(-x,-y,-z); | ||||
|         return MakeVec(-x,-y,-z); | ||||
|     } | ||||
|     Vec3 operator * (const Vec3 &other) const | ||||
|     Vec3<decltype(T{}*T{})> operator * (const Vec3 &other) const | ||||
|     { | ||||
|         return Vec3(x*other.x, y*other.y, z*other.z); | ||||
|         return MakeVec(x*other.x, y*other.y, z*other.z); | ||||
|     } | ||||
|     template<typename V> | ||||
|     Vec3 operator * (const V& f) const | ||||
|     Vec3<decltype(T{}*V{})> operator * (const V& f) const | ||||
|     { | ||||
|         return Vec3(x*f,y*f,z*f); | ||||
|         return MakeVec(x*f,y*f,z*f); | ||||
|     } | ||||
|     template<typename V> | ||||
|     void operator *= (const V& f) | ||||
|  | @ -245,9 +241,9 @@ public: | |||
|         x*=f; y*=f; z*=f; | ||||
|     } | ||||
|     template<typename V> | ||||
|     Vec3 operator / (const V& f) const | ||||
|     Vec3<decltype(T{}/V{})> operator / (const V& f) const | ||||
|     { | ||||
|         return Vec3(x/f,y/f,z/f); | ||||
|         return MakeVec(x/f,y/f,z/f); | ||||
|     } | ||||
|     template<typename V> | ||||
|     void operator /= (const V& f) | ||||
|  | @ -310,7 +306,7 @@ public: | |||
|     // swizzlers - create a subvector of specific components
 | ||||
|     // e.g. Vec2 uv() { return Vec2(x,y); }
 | ||||
|     // _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
 | ||||
| #define _DEFINE_SWIZZLER2(a, b, name) Vec2<T> name() const { return Vec2<T>(a, b); } | ||||
| #define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); } | ||||
| #define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \ | ||||
|     _DEFINE_SWIZZLER2(a, b, a##b); \ | ||||
|     _DEFINE_SWIZZLER2(a, b, a2##b2); \ | ||||
|  | @ -326,20 +322,6 @@ public: | |||
|     DEFINE_SWIZZLER2(y, z, g, b, v, w, t, q); | ||||
| #undef DEFINE_SWIZZLER2 | ||||
| #undef _DEFINE_SWIZZLER2 | ||||
| 
 | ||||
|     // Inserters to add new elements to effectively create larger vectors containing this Vec2
 | ||||
|     Vec4<T> InsertBeforeX(const T& value) { | ||||
|         return Vec4<T>(value, x, y, z); | ||||
|     } | ||||
|     Vec4<T> InsertBeforeY(const T& value) { | ||||
|         return Vec4<T>(x, value, y, z); | ||||
|     } | ||||
|     Vec4<T> InsertBeforeZ(const T& value) { | ||||
|         return Vec4<T>(x, y, value, z); | ||||
|     } | ||||
|     Vec4<T> Append(const T& value) { | ||||
|         return Vec4<T>(x, y, z, value); | ||||
|     } | ||||
| }; | ||||
| 
 | ||||
| template<typename T, typename V> | ||||
|  | @ -383,34 +365,34 @@ public: | |||
|         a[0] = x; a[1] = y; a[2] = z; a[3] = w; | ||||
|     } | ||||
| 
 | ||||
|     Vec4 operator +(const Vec4& other) const | ||||
|     Vec4<decltype(T{}+T{})> operator +(const Vec4& other) const | ||||
|     { | ||||
|         return Vec4(x+other.x, y+other.y, z+other.z, w+other.w); | ||||
|         return MakeVec(x+other.x, y+other.y, z+other.z, w+other.w); | ||||
|     } | ||||
|     void operator += (const Vec4& other) | ||||
|     { | ||||
|         x+=other.x; y+=other.y; z+=other.z; w+=other.w; | ||||
|     } | ||||
|     Vec4 operator -(const Vec4 &other) const | ||||
|     Vec4<decltype(T{}-T{})> operator -(const Vec4 &other) const | ||||
|     { | ||||
|         return Vec4(x-other.x, y-other.y, z-other.z, w-other.w); | ||||
|         return MakeVec(x-other.x, y-other.y, z-other.z, w-other.w); | ||||
|     } | ||||
|     void operator -= (const Vec4 &other) | ||||
|     { | ||||
|         x-=other.x; y-=other.y; z-=other.z; w-=other.w; | ||||
|     } | ||||
|     Vec4 operator -() const | ||||
|     Vec4<decltype(-T{})> operator -() const | ||||
|     { | ||||
|         return Vec4(-x,-y,-z,-w); | ||||
|         return MakeVec(-x,-y,-z,-w); | ||||
|     } | ||||
|     Vec4 operator * (const Vec4 &other) const | ||||
|     Vec4<decltype(T{}*T{})> operator * (const Vec4 &other) const | ||||
|     { | ||||
|         return Vec4(x*other.x, y*other.y, z*other.z, w*other.w); | ||||
|         return MakeVec(x*other.x, y*other.y, z*other.z, w*other.w); | ||||
|     } | ||||
|     template<typename V> | ||||
|     Vec4 operator * (const V& f) const | ||||
|     Vec4<decltype(T{}*V{})> operator * (const V& f) const | ||||
|     { | ||||
|         return Vec4(x*f,y*f,z*f,w*f); | ||||
|         return MakeVec(x*f,y*f,z*f,w*f); | ||||
|     } | ||||
|     template<typename V> | ||||
|     void operator *= (const V& f) | ||||
|  | @ -418,9 +400,9 @@ public: | |||
|         x*=f; y*=f; z*=f; w*=f; | ||||
|     } | ||||
|     template<typename V> | ||||
|     Vec4 operator / (const V& f) const | ||||
|     Vec4<decltype(T{}/V{})> operator / (const V& f) const | ||||
|     { | ||||
|         return Vec4(x/f,y/f,z/f,w/f); | ||||
|         return MakeVec(x/f,y/f,z/f,w/f); | ||||
|     } | ||||
|     template<typename V> | ||||
|     void operator /= (const V& f) | ||||
|  | @ -469,7 +451,7 @@ public: | |||
|     // swizzlers - create a subvector of specific components
 | ||||
|     // e.g. Vec2 uv() { return Vec2(x,y); }
 | ||||
|     // _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
 | ||||
| #define _DEFINE_SWIZZLER2(a, b, name) Vec2<T> name() const { return Vec2<T>(a, b); } | ||||
| #define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); } | ||||
| #define DEFINE_SWIZZLER2(a, b, a2, b2) \ | ||||
|     _DEFINE_SWIZZLER2(a, b, a##b); \ | ||||
|     _DEFINE_SWIZZLER2(a, b, a2##b2); \ | ||||
|  | @ -485,7 +467,7 @@ public: | |||
| #undef DEFINE_SWIZZLER2 | ||||
| #undef _DEFINE_SWIZZLER2 | ||||
| 
 | ||||
| #define _DEFINE_SWIZZLER3(a, b, c, name) Vec3<T> name() const { return Vec3<T>(a, b, c); } | ||||
| #define _DEFINE_SWIZZLER3(a, b, c, name) const Vec3<T> name() const { return Vec3<T>(a, b, c); } | ||||
| #define DEFINE_SWIZZLER3(a, b, c, a2, b2, c2) \ | ||||
|     _DEFINE_SWIZZLER3(a, b, c, a##b##c); \ | ||||
|     _DEFINE_SWIZZLER3(a, c, b, a##c##b); \ | ||||
|  | @ -510,69 +492,121 @@ public: | |||
| 
 | ||||
| 
 | ||||
| template<typename T, typename V> | ||||
| Vec4<T> operator * (const V& f, const Vec4<T>& vec) | ||||
| Vec4<decltype(V{}*T{})> operator * (const V& f, const Vec4<T>& vec) | ||||
| { | ||||
|     return Vec4<T>(f*vec.x,f*vec.y,f*vec.z,f*vec.w); | ||||
|     return MakeVec(f*vec.x,f*vec.y,f*vec.z,f*vec.w); | ||||
| } | ||||
| 
 | ||||
| typedef Vec4<float> Vec4f; | ||||
| 
 | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline T Dot(const Vec2<T>& a, const Vec2<T>& b) | ||||
| static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec2<T>& a, const Vec2<T>& b) | ||||
| { | ||||
|     return a.x*b.x + a.y*b.y; | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline T Dot(const Vec3<T>& a, const Vec3<T>& b) | ||||
| static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec3<T>& a, const Vec3<T>& b) | ||||
| { | ||||
|     return a.x*b.x + a.y*b.y + a.z*b.z; | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline T Dot(const Vec4<T>& a, const Vec4<T>& b) | ||||
| static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec4<T>& a, const Vec4<T>& b) | ||||
| { | ||||
|     return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec3<T> Cross(const Vec3<T>& a, const Vec3<T>& b) | ||||
| static inline Vec3<decltype(T{}*T{}-T{}*T{})> Cross(const Vec3<T>& a, const Vec3<T>& b) | ||||
| { | ||||
|     return Vec3<T>(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x); | ||||
|     return MakeVec(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x); | ||||
| } | ||||
| 
 | ||||
| // linear interpolation via float: 0.0=begin, 1.0=end
 | ||||
| template<typename X> | ||||
| static inline X Lerp(const X& begin, const X& end, const float t) | ||||
| static inline decltype(X{}*float{}+X{}*float{}) Lerp(const X& begin, const X& end, const float t) | ||||
| { | ||||
|     return begin*(1.f-t) + end*t; | ||||
| } | ||||
| 
 | ||||
| // linear interpolation via int: 0=begin, base=end
 | ||||
| template<typename X, int base> | ||||
| static inline X LerpInt(const X& begin, const X& end, const int t) | ||||
| static inline decltype((X{}*int{}+X{}*int{}) / base) LerpInt(const X& begin, const X& end, const int t) | ||||
| { | ||||
|     return (begin*(base-t) + end*t) / base; | ||||
| } | ||||
| 
 | ||||
| // Utility vector factories
 | ||||
| template<typename T> | ||||
| static inline Vec2<T> MakeVec2(const T& x, const T& y) | ||||
| static inline Vec2<T> MakeVec(const T& x, const T& y) | ||||
| { | ||||
|     return Vec2<T>{x, y}; | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec3<T> MakeVec3(const T& x, const T& y, const T& z) | ||||
| static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z) | ||||
| { | ||||
|     return Vec3<T>{x, y, z}; | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec4<T> MakeVec4(const T& x, const T& y, const T& z, const T& w) | ||||
| static inline Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw) | ||||
| { | ||||
|     return MakeVec(x, y, zw[0], zw[1]); | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec3<T> MakeVec(const Vec2<T>& xy, const T& z) | ||||
| { | ||||
|     return MakeVec(xy[0], xy[1], z); | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec3<T> MakeVec(const T& x, const Vec2<T>& yz) | ||||
| { | ||||
|     return MakeVec(x, yz[0], yz[1]); | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w) | ||||
| { | ||||
|     return Vec4<T>{x, y, z, w}; | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w) | ||||
| { | ||||
|     return MakeVec(xy[0], xy[1], z, w); | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w) | ||||
| { | ||||
|     return MakeVec(x, yz[0], yz[1], w); | ||||
| } | ||||
| 
 | ||||
| // NOTE: This has priority over "Vec2<Vec2<T>> MakeVec(const Vec2<T>& x, const Vec2<T>& y)".
 | ||||
| //       Even if someone wanted to use an odd object like Vec2<Vec2<T>>, the compiler would error
 | ||||
| //       out soon enough due to misuse of the returned structure.
 | ||||
| template<typename T> | ||||
| static inline Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw) | ||||
| { | ||||
|     return MakeVec(xy[0], xy[1], zw[0], zw[1]); | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w) | ||||
| { | ||||
|     return MakeVec(xyz[0], xyz[1], xyz[2], w); | ||||
| } | ||||
| 
 | ||||
| template<typename T> | ||||
| static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yzw) | ||||
| { | ||||
|     return MakeVec(x, yzw[0], yzw[1], yzw[2]); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| } // namespace
 | ||||
|  |  | |||
|  | @ -78,10 +78,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | |||
|     u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); | ||||
|     u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); | ||||
| 
 | ||||
|     min_x = min_x & Fix12P4::IntMask(); | ||||
|     min_y = min_y & Fix12P4::IntMask(); | ||||
|     max_x = (max_x + Fix12P4::FracMask()) & Fix12P4::IntMask(); | ||||
|     max_y = (max_y + Fix12P4::FracMask()) & Fix12P4::IntMask(); | ||||
|     min_x &= Fix12P4::IntMask(); | ||||
|     min_y &= Fix12P4::IntMask(); | ||||
|     max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask()); | ||||
|     max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask()); | ||||
| 
 | ||||
|     // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
 | ||||
|     // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
 | ||||
|  | @ -112,10 +112,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | |||
|             auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1, | ||||
|                                const Math::Vec2<Fix12P4>& vtx2, | ||||
|                                const Math::Vec2<Fix12P4>& vtx3) { | ||||
|                 const auto vec1 = (vtx2.Cast<int>() - vtx1.Cast<int>()).Append(0); | ||||
|                 const auto vec2 = (vtx3.Cast<int>() - vtx1.Cast<int>()).Append(0); | ||||
|                 const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0); | ||||
|                 const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0); | ||||
|                 // TODO: There is a very small chance this will overflow for sizeof(int) == 4
 | ||||
|                 return Cross(vec1, vec2).z; | ||||
|                 return Math::Cross(vec1, vec2).z; | ||||
|             }; | ||||
| 
 | ||||
|             int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); | ||||
|  | @ -143,15 +143,15 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | |||
|             //
 | ||||
|             // The generalization to three vertices is straightforward in baricentric coordinates.
 | ||||
|             auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) { | ||||
|                 auto attr_over_w = Math::MakeVec3(attr0 / v0.pos.w, | ||||
|                                                   attr1 / v1.pos.w, | ||||
|                                                   attr2 / v2.pos.w); | ||||
|                 auto w_inverse   = Math::MakeVec3(float24::FromFloat32(1.f) / v0.pos.w, | ||||
|                                                   float24::FromFloat32(1.f) / v1.pos.w, | ||||
|                                                   float24::FromFloat32(1.f) / v2.pos.w); | ||||
|                 auto baricentric_coordinates = Math::MakeVec3(float24::FromFloat32(w0), | ||||
|                                                               float24::FromFloat32(w1), | ||||
|                                                               float24::FromFloat32(w2)); | ||||
|                 auto attr_over_w = Math::MakeVec(attr0 / v0.pos.w, | ||||
|                                                  attr1 / v1.pos.w, | ||||
|                                                  attr2 / v2.pos.w); | ||||
|                 auto w_inverse   = Math::MakeVec(float24::FromFloat32(1.f) / v0.pos.w, | ||||
|                                                  float24::FromFloat32(1.f) / v1.pos.w, | ||||
|                                                  float24::FromFloat32(1.f) / v2.pos.w); | ||||
|                 auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(w0), | ||||
|                                                              float24::FromFloat32(w1), | ||||
|                                                              float24::FromFloat32(w2)); | ||||
| 
 | ||||
|                 float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates); | ||||
|                 float24 interpolated_w_inverse   = Math::Dot(w_inverse,   baricentric_coordinates); | ||||
|  |  | |||
|  | @ -27,7 +27,6 @@ struct OutputVertex { | |||
|     Math::Vec4<float24> dummy; // quaternions (not implemented, yet)
 | ||||
|     Math::Vec4<float24> color; | ||||
|     Math::Vec2<float24> tc0; | ||||
|     float24 tc0_v; | ||||
| 
 | ||||
|     // Padding for optimal alignment
 | ||||
|     float24 pad[14]; | ||||
|  | @ -36,6 +35,7 @@ struct OutputVertex { | |||
| 
 | ||||
|     // position after perspective divide
 | ||||
|     Math::Vec3<float24> screenpos; | ||||
|     float24 pad2; | ||||
| 
 | ||||
|     // Linear interpolation
 | ||||
|     // factor: 0=this, 1=vtx
 | ||||
|  | @ -59,6 +59,7 @@ struct OutputVertex { | |||
|     } | ||||
| }; | ||||
| static_assert(std::is_pod<OutputVertex>::value, "Structure is not POD"); | ||||
| static_assert(sizeof(OutputVertex) == 32 * sizeof(float), "OutputVertex has invalid size"); | ||||
| 
 | ||||
| union Instruction { | ||||
|     enum class OpCode : u32 { | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue